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Linear Least Squares Estimation

For a measurable quantity, x, the following two equations hold,

measured value true value + measurement error

et

X X+ V

measured value estimated value 4+ residual error

Ll

X = X+e

Note,
@ The actual measurement error (v) and the true value (x) is never known
in practice.
@ The errors in the process/mechanism that physically generate this error
are usually approximated by some known process (Gaussian noise with

known variance).
@ The statistical properties are utilized to weight the relative importance of
the various measurements used in the estimation scheme.

@ The residual error is known exactly and is easily computed once an
estimated value has been found.

@ The residual error drives the estimator.




Linear Batch Estimation

Consider a batch of measurements obtained at discrete instants of time:

1 h), (Y, &), (V3,8), -+ (Vm, Im) }

We wish to model these measurements via a mathematical model.
(REMEMBER: YOU ARE PROPOSING THE MODEL!)

y(t) = zn:x;h,-(r), m>n

where, h;i(t) € {hi(t), h=(t), ha(t),-- - , ha(t)} are a set of independent
specified basis functions. x; are the constants whose values are to be

determined. We seek to obtain optimum x-values based upon a measure of

“how well” the model predicts the measurements. Errors in the prediction are
usually due to,

@ measurement errors
@ incorrect x-values

@ modelling errors, i.e. the proposed model was bad.




Linear Batch Estimation

Lets relate the measurements ( jfj,-} and the estimated outputs (;).

it i

Yi=y(t) = X: (6)+v; J=1,2,....m

The estimated outputs are cnmputed using the estimated values of x and the
basis functions.

What about v;?

Clearly, j; = 3", %ihi(t) + €j, where g is the residual error, g; = j; — §;. We
can compactly represent the above by combining the measurements at all
time instants and stacking them up as,

y=Hx+e (1)




Linear Batch Estimation

(V1 2 --- ¥m]" = measured y — values
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[e; e --- ep] = residual errors
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[ Xy X2 --+ Xp] = estimated X — values
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Similarly one can also develop the following equations,

-

Vv = Hx+v
y = Hx

Equations (1) and (2) are commonly referred to as the “observation
equations”.




Linear Batch Estimation

Gauss’ least squares principle selects the optimum % by minimizing the sum
square of the residual errors, given by
1 7 1

_ _ - ﬂTF_ v
J_Ee 9_2(}' Hx) (y — Hx)

J = J(&) = % (777 — 2§ Hx + X" H"Hx)

The multiplier 1/2 has a statistical significance (will be discussed later). Now,
use matrix calculus differentiation rules to obtain the necessary condition for
the minimum.

Necessary condition: Vgd = HHXx — H'y =0, i.e., X = (HTH)_1 H'y

9°J
= H"H > 0 (H"H is positive definite)

Sufficient condition: V3J = ————
X oxx’

The inverse of H" H is required. A good choice of the basis functions is
important.




Weighted Least Squares Estimation

If each measurement is made with different precisions, it is better if this
aspect is captured by weighting the measurements accordingly. The choice
of the weights is non-unique but it turns out that the inverse of the
measurement error variance is an intuitive choice.

J= %ET We
Necessary condition: VyJ = H WHx — HT Wy =0, i.e.,
x=(H"WH)" H Wy
92J
W is typically chosen to be a diagonal matrix. A subset of the w;; are chosen
much larger than the others to reflect the preciseness of that specific subset

of measurements.

Sufficient condition: VJ = — H"WH > 0 (H" WH is positive definite)




Nonlinear Least Squares Estimation

@ Most real world estimation problems are nonlinear

@ Linear versions of the estimation problem and associated developments
apply only to a subset of problems encountered in practice.

@ Most nonlinear estimation problems can be accurately solved by a
judiciously chosen successive approximation procedure.

Most widely used Successive Approximation Procedure = Nonlinear Least
Squares - also known as Gaussian Least Squares Differential Correction

(Early application by Gauss in 1800s to determine planetary orbits from
telescope measurements of the “line of sight angles” to the planets)




Nonlinear Least Squares Estimation

Measurement Model: y = f(x) + v

measured y—values
independent functions
true X —values

measurement errors

estimated y—values
estimated X —values

residual errors




Rewrite Measurement Model:

ot

y=1x)+e
As before, we seek an estimate (x) for x that minimizes

J_ %ET We — %[p —F(R)]T W[y — £(X)]

W is an m x m weighting matrix used to weight the relative importance of
each measurement.

Gauss’ Procedure:

Assume current estimates of the unknown x-values are available

Xec = [Xm Xog ... ch:]T




Whatever the unknown objective x-values, X are, we assume they are related
to the respective current estimates, by an also unknown set of corrections

AXx.
i' — x.:: —|— ﬂx

Linearize f(Xx) about x..
f(X) ~ f(x:) + HAX
where,
of

H:.—
ox

|xc

The Gradient Matrix H is known as the Jacobian matrix. The measurement

residual after the correction can now be linearly approximated as
Ay=y—f(x)~=y— f(x:) — HAx = Ay. — HAX

where, the residual “before the correction” is

Aye = i — f(x)




Objective: Minimize weighted sum squares J

Strategy: To determine approximate corrections in Ax, select particular
corrections that lead to minimum sum of squares of the linearly predicted
residuals, Jp:

J= %&yT WAy =~ J, = %(ayc — HAX) W(Aye — HAX)

Following the minimization procedure as before, one obtains
Ax = (HTWH)""TH"WAYy.

An initial guess Ax. is essential to begin the procedure. A stopping condition
with an accuracy dependent tolerance is given by

JE |Jf—Jf_1| E

d <
Ji Wi

where, = is some prescribed small value. |f the condition is not satisfied then
the update procedure is iterated with the new estimate.




