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Epipolar Geometry and the Fundamental Matrix

The epipolar geometry is the intrinsic projective geometrybetween two views. It is
independent of scene structure, and only depends on the cameras’ internal parameters
and relative pose.

The fundamental matrixF encapsulates this intrinsic geometry. It is a3 × 3 matrix
of rank 2. If a point in 3-spaceX is imaged asx in the first view, andx′ in the second,
then the image points satisfy the relationx

′T
Fx = 0.

We will first describe epipolar geometry, and derive the fundamental matrix. The
properties of the fundamental matrix are then elucidated, both for general motion of
the camera between the views, and for several commonly occurring special motions. It
is next shown that the cameras can be retrieved fromF up to a projective transformation
of 3-space. This result is the basis for the projective reconstruction theorem given in
chapter 10. Finally, if the camera internal calibration is known, it is shown that the Eu-
clidean motion of the cameras between views may be computed from the fundamental
matrix up to a finite number of ambiguities.

The fundamental matrix is independent of scene structure. However, it can be com-
puted from correspondences of imaged scene points alone, without requiring knowl-
edge of the cameras’ internal parameters or relative pose. This computation is de-
scribed in chapter 11.

9.1 Epipolar geometry

The epipolar geometry between two views is essentially the geometry of the inter-
section of the image planes with the pencil of planes having the baseline as axis (the
baseline is the line joining the camera centres). This geometry is usually motivated by
considering the search for corresponding points in stereo matching, and we will start
from that objective here.

Suppose a pointX in 3-space is imaged in two views, atx in the first, andx′ in the
second. What is the relation between the corresponding image pointsx andx

′? As
shown in figure 9.1a the image pointsx andx

′, space pointX, and camera centres
are coplanar. Denote this plane asπ. Clearly, the rays back-projected fromx andx

′

intersect atX, and the rays are coplanar, lying inπ. It is this latter property that is of
most significance in searching for a correspondence.

239
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Fig. 9.1. Point correspondence geometry.(a) The two cameras are indicated by their centresC and
C′ and image planes. The camera centres, 3-space pointX, and its imagesx andx′ lie in a common
planeπ. (b) An image pointx back-projects to a ray in 3-space defined by the first camera centre,C,
andx. This ray is imaged as a linel′ in the second view. The 3-space pointX which projects tox must
lie on this ray, so the image ofX in the second view must lie onl′.
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Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipolese
ande′. Any planeπ containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar linesl andl′. (b) As the position of the 3D pointX varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.

Supposing now that we know onlyx, we may ask how the corresponding pointx
′ is

constrained. The planeπ is determined by the baseline and the ray defined byx. From
above we know that the ray corresponding to the (unknown) point x′ lies in π, hence
the pointx′ lies on the line of intersectionl′ of π with the second image plane. This line
l
′ is the image in the second view of the ray back-projected fromx. It is theepipolar

line corresponding tox. In terms of a stereo correspondence algorithm the benefit is
that the search for the point corresponding tox need not cover the entire image plane
but can be restricted to the linel′.

The geometric entities involved in epipolar geometry are illustrated in figure 9.2.
The terminology is

• The epipole is thepoint of intersection of the line joining the camera centres (the
baseline) with the image plane. Equivalently, the epipole is the image in one view
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Fig. 9.3. Converging cameras.(a) Epipolar geometry for converging cameras. (b) and (c) A pair of
images with superimposed corresponding points and their epipolar lines (in white). The motion between
the views is a translation and rotation. In each image, the direction of the other camera may be inferred
from the intersection of the pencil of epipolar lines. In this case, both epipoles lie outside of the visible
image.

of the camera centre of the other view. It is also the vanishing point of the baseline
(translation) direction.

• An epipolar plane is a plane containing the baseline. There is a one-parameter
family (a pencil) of epipolar planes.

• An epipolar line is the intersection of an epipolar plane with the image plane. All
epipolar lines intersect at the epipole. An epipolar plane intersects the left and right
image planes in epipolar lines, and defines the correspondence between the lines.

Examples of epipolar geometry are given in figure 9.3 and figure 9.4. The epipolar
geometry of these image pairs, and indeed all the examples ofthis chapter, is computed
directly from the images as described in section 11.6(p290).

9.2 The fundamental matrixF

The fundamental matrix is the algebraic representation of epipolar geometry. In the
following we derive the fundamental matrix from the mappingbetween a point and its
epipolar line, and then specify the properties of the matrix.

Given a pair of images, it was seen in figure 9.1 that to each point x in one image,
there exists a corresponding epipolar linel

′ in the other image. Any pointx′ in the
second image matching the pointx must lie on the epipolar linel′. The epipolar line
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Fig. 9.4. Motion parallel to the image plane. In the case of a special motion where the translation is
parallel to the image plane, and the rotation axis is perpendicular to the image plane, the intersection
of the baseline with the image plane is at infinity. Consequently the epipoles are at infinity, and epipolar
lines are parallel. (a) Epipolar geometry for motion parallel to the image plane. (b) and (c) a pair of
images for which the motion between views is (approximately) a translation parallel to thex-axis, with
no rotation. Four corresponding epipolar lines are superimposed in white. Note that corresponding
points lie on corresponding epipolar lines.

is the projection in the second image of the ray from the pointx through the camera
centreC of the first camera. Thus, there is a map

x 7→ l
′

from a point in one image to its corresponding epipolar line in the other image. It is
the nature of this map that will now be explored. It will turn out that this mapping
is a (singular)correlation, that is a projective mapping from points to lines, which is
represented by a matrixF, the fundamental matrix.

9.2.1 Geometric derivation

We begin with a geometric derivation of the fundamental matrix. The mapping from
a point in one image to a corresponding epipolar line in the other image may be de-
composed into two steps. In the first step, the pointx is mapped to some pointx′ in
the other image lying on the epipolar linel′. This pointx′ is a potential match for the
pointx. In the second step, the epipolar linel

′ is obtained as the line joiningx′ to the
epipolee′.

Step 1: Point transfer via a plane. Refer to figure 9.5. Consider a planeπ in space
not passing through either of the two camera centres. The raythrough the first camera
centre corresponding to the pointx meets the planeπ in a pointX. This pointX is
then projected to a pointx′ in the second image. This procedure is known as transfer
via the planeπ. SinceX lies on the ray corresponding tox, the projected pointx′

must lie on the epipolar linel′ corresponding to the image of this ray, as illustrated in
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Fig. 9.5. A pointx in one image is transferred via the planeπ to a matching pointx′ in the second
image. The epipolar line throughx′ is obtained by joiningx′ to the epipolee′. In symbols one may
write x′ = Hπx andl′ = [e′]×x′ = [e′]×Hπx = Fx whereF = [e′]×Hπ is the fundamental matrix.

figure 9.1b. The pointsx andx
′ are both images of the 3D pointX lying on a plane.

The set of all such pointsxi in the first image and the corresponding pointsx
′

i
in the

second image are projectively equivalent, since they are each projectively equivalent to
the planar point setXi. Thus there is a 2D homographyHπ mapping eachxi to x

′

i
.

Step 2: Constructing the epipolar line. Given the pointx′ the epipolar linel′ passing
throughx′ and the epipolee′ can be written asl′ = e

′×x
′ = [e′]×x

′ (the notation[e′]×
is defined in (4.5–p581)). Sincex′ may be written asx′ = Hπx, we have

l
′ = [e′]×Hπx = Fx

where we defineF = [e′]×Hπ, the fundamental matrix. This shows

Result 9.1. The fundamental matrixF may be written asF = [e′]×Hπ, whereHπ is the
transfer mapping from one image to another via any planeπ. Furthermore, since[e′]×
has rank 2 andHπ rank 3,F is a matrix of rank 2.

Geometrically,F represents a mapping from the 2-dimensional projective plane IP2

of the first image to the pencil of epipolar lines through the epipolee
′. Thus, it rep-

resents a mapping from a 2-dimensional onto a 1-dimensionalprojective space, and
hence must have rank 2.

Note, the geometric derivation above involves a scene planeπ, but a plane isnot
required in order forF to exist. The plane is simply used here as a means of defining a
point map from one image to another. The connection between the fundamental matrix
and transfer of points from one image to another via a plane isdealt with in some depth
in chapter 13.

9.2.2 Algebraic derivation

The form of the fundamental matrix in terms of the two camera projection matri-
ces,P, P′, may be derived algebraically. The following formulation is due to Xu and
Zhang [Xu-96].
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The ray back-projected fromx by P is obtained by solvingPX = x. The one-
parameter family of solutions is of the form given by (6.13–p162) as

X(λ) = P
+
x + λC

whereP+ is the pseudo-inverse ofP, i.e. PP+ = I, andC its null-vector, namely the
camera centre, defined byPC = 0. The ray is parametrized by the scalarλ. In
particular two points on the ray areP+

x (at λ = 0), and the first camera centreC
(at λ = ∞). These two points are imaged by the second cameraP

′ at P′P+
x andP′C

respectively in the second view. The epipolar line is the line joining these two projected
points, namelyl′ = (P′C)× (P′P+

x). The pointP′C is the epipole in the second image,
namely the projection of the first camera centre, and may be denoted bye′. Thus,
l
′ = [e′]×(P′P+)x = Fx, whereF is the matrix

F = [e′]×P
′
P

+. (9.1)

This is essentially the same formula for the fundamental matrix as the one derived in
the previous section, the homographyHπ having the explicit formHπ = P

′
P

+ in terms
of the two camera matrices. Note that this derivation breaksdown in the case where
the two camera centres are the same for, in this case,C is the common camera centre
of bothP andP′, and soP′C = 0. It follows thatF defined in (9.1) is the zero matrix.

Example 9.2. Suppose the camera matrices are those of a calibrated stereorig with the
world origin at the first camera

P = K[I | 0] P
′ = K

′[R | t].
Then

P
+ =

[

K
−1

0
T

]

C =

(

0

1

)

and

F = [P′C]×P
′
P

+

= [K′t]×K
′
RK

−1 = K
′−T[t]×RK

−1 = K
′−T

R[RT
t]×K

−1 = K
′−T

RK
T[KRT

t]× (9.2)

where the various forms follow from result 4.3(p582). Note that the epipoles (defined
as the image of the other camera centre) are

e = P

(

−R
T
t

1

)

= KR
T
t e

′ = P
′

(

0

1

)

= K
′
t. (9.3)

Thus we may write (9.2) as

F = [e′]×K
′
RK

−1 = K
′−T[t]×RK

−1 = K
′−T

R[RT
t]×K

−1 = K
′−T

RK
T[e]×. (9.4)

△
The expression for the fundamental matrix can be derived in many ways, and indeed
will be derived again several times in this book. In particular, (17.3–p412) expressesF
in terms of4 × 4 determinants composed from rows of the camera matrices for each
view.
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9.2.3 Correspondence condition

Up to this point we have considered the mapx → l
′ defined byF. We may now state

the most basic properties of the fundamental matrix.

Result 9.3. The fundamental matrix satisfies the condition that for any pair of corre-
sponding pointsx ↔ x

′ in the two images

x
′T
Fx = 0.

This is true, because if pointsx andx
′ correspond, thenx′ lies on the epipolar line

l
′ = Fx corresponding to the pointx. In other words0 = x

′T
l
′ = x

′T
Fx. Conversely,

if image points satisfy the relationx′T
Fx = 0 then the rays defined by these points are

coplanar. This is a necessary condition for points to correspond.
The importance of the relation of result 9.3 is that it gives away of characterizing

the fundamental matrix without reference to the camera matrices, i.e. only in terms of
corresponding image points. This enablesF to be computed from image correspon-
dences alone. We have seen from (9.1) thatF may be computed from the two camera
matrices,P, P′, and in particular thatF is determined uniquely from the cameras, up
to an overall scaling. However, we may now enquire how many correspondences are
required to computeF from x

′T
Fx = 0, and the circumstances under which the ma-

trix is uniquely defined by these correspondences. The details of this are postponed
until chapter 11, where it will be seen that in general at least 7 correspondences are
required to computeF.

9.2.4 Properties of the fundamental matrix

Definition 9.4. Suppose we have two images acquired by cameras with non-coincident
centres, then thefundamental matrix F is the unique3×3 rank 2 homogeneous matrix
which satisfies

x
′T
Fx = 0 (9.5)

for all corresponding pointsx ↔ x
′.

We now briefly list a number of properties of the fundamental matrix. The most
important properties are also summarized in table 9.1.

(i) Transpose: If F is the fundamental matrix of the pair of cameras(P, P′), then
F

T is the fundamental matrix of the pair in the opposite order:(P′, P).
(ii) Epipolar lines: For any pointx in the first image, the corresponding epipolar

line is l
′ = Fx. Similarly, l = F

T
x
′ represents the epipolar line corresponding

to x
′ in the second image.

(iii) The epipole: for any pointx (other thane) the epipolar linel′ = Fx contains
the epipolee′. Thuse′ satisfiese′T(Fx) = (e′T

F)x = 0 for all x. It follows that
e
′T
F = 0, i.e.e′ is the left null-vector ofF. Similarly Fe = 0, i.e.e is the right

null-vector ofF.
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• F is a rank 2 homogeneous matrix with 7 degrees of freedom.

• Point correspondence: If x andx′ are corresponding image points, then

x′T
Fx = 0.

• Epipolar lines:

⋄ l′ = Fx is the epipolar line corresponding tox.

⋄ l = F
Tx′ is the epipolar line corresponding tox′.

• Epipoles:

⋄ Fe = 0.

⋄ F
Te′ = 0.

• Computation from camera matricesP, P′:
⋄ General cameras,

F = [e′]×P
′
P
+, whereP+ is the pseudo-inverse ofP, ande′ = P

′C, with PC = 0.

⋄ Canonical cameras,P = [I | 0], P′ = [M | m],
F = [e′]×M = M

−T[e]×, wheree′ = m ande = M
−1m.

⋄ Cameras not at infinityP = K[I | 0], P′ = K
′[R | t],

F = K
′−T[t]×RK

−1 = [K′t]×K
′
RK

−1 = K
′−T

RK
T[KRTt]×.

Table 9.1.Summary of fundamental matrix properties.

(iv) F has seven degrees of freedom: a3×3 homogeneous matrix has eight indepen-
dent ratios (there are nine elements, and the common scalingis not significant);
however,F also satisfies the constraintdet F = 0 which removes one degree of
freedom.

(v) F is acorrelation, a projective map taking a point to a line (see definition 2.29-
(p59)). In this case a point in the first imagex defines a line in the second
l
′ = Fx, which is the epipolar line ofx. If l andl

′ are corresponding epipolar
lines (see figure 9.6a) then any pointx on l is mapped to the same linel′. This
means there is no inverse mapping, andF is not of full rank. For this reason,F
is not a proper correlation (which would be invertible).

9.2.5 The epipolar line homography

The set of epipolar lines in each of the images forms a pencil of lines passing through
the epipole. Such a pencil of lines may be considered as a 1-dimensional projective
space. It is clear from figure 9.6b that corresponding epipolar lines are perspectively
related, so that there is a homography between the pencil of epipolar lines centred ate
in the first view, and the pencil centred ate

′ in the second. A homography between two
such 1-dimensional projective spaces has 3 degrees of freedom.

The degrees of freedom of the fundamental matrix can thus be counted as follows: 2
for e, 2 for e′, and 3 for the epipolar line homography which maps a line throughe to a
line throughe′. A geometric representation of this homography is given in section 9.4.
Here we give an explicit formula for this mapping.
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Fig. 9.6. Epipolar line homography. (a) There is a pencil of epipolar lines in each image centred on the
epipole. The correspondence between epipolar lines,li ↔ l′

i
, is defined by the pencil of planes with axis

the baseline. (b) The corresponding lines are related by a perspectivity with centre any pointp on the
baseline. It follows that the correspondence between epipolar lines in the pencils is a 1D homography.

Result 9.5. Supposel and l
′ are corresponding epipolar lines, andk is any line not

passing through the epipolee, thenl and l
′ are related byl′ = F[k]×l. Symmetrically,

l = F
T[k′]×l

′.

Proof. The expression[k]×l = k× l is the point of intersection of the two linesk and
l, and hence a point on the epipolar linel – call itx. Hence,F[k]×l = Fx is the epipolar
line corresponding to the pointx, namely the linel′.

Furthermore a convenient choice fork is the linee, sincek
T
e = e

T
e 6= 0, so that

the linee does not pass through the pointe as is required. A similar argument holds
for the choice ofk′ = e

′. Thus the epipolar line homography may be written as

l
′ = F[e]×l l = F

T[e′]×l
′ .

9.3 Fundamental matrices arising from special motions

A special motion arises from a particular relationship between the translation direction,
t, and the direction of the rotation axis,a. We will discuss two cases:pure translation,
where there is no rotation; andpure planar motion, wheret is orthogonal toa (the
significance of the planar motion case is described in section 3.4.1(p77)). The ‘pure’
indicates that there is no change in the internal parameters. Such cases are important,
firstly because they occur in practice, for example a camera viewing an object rotating
on a turntable is equivalent to planar motion for pairs of views; and secondly because
the fundamental matrix has a special form and thus additional properties.

9.3.1 Pure translation

In considering pure translations of the camera, one may consider the equivalent situ-
ation in which the camera is stationary, and the world undergoes a translation−t. In
this situation points in 3-space move on straight lines parallel to t, and the imaged in-
tersection of these parallel lines is the vanishing pointv in the direction oft. This is
illustrated in figure 9.7 and figure 9.8. It is evident thatv is the epipole for both views,
and the imaged parallel lines are the epipolar lines. The algebraic details are given in
the following example.
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Fig. 9.7. Under a pure translational camera motion, 3D points appear to slide along parallel rails. The
images of these parallel lines intersect in a vanishing point corresponding to the translation direction.
The epipolee is the vanishing point.
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Fig. 9.8. Pure translational motion. (a) under the motion the epipole is a fixed point, i.e. has the same
coordinates in both images, and points appear to move along lines radiating from the epipole. The
epipole in this case is termed theFocus of Expansion(FOE). (b) and (c) the same epipolar lines are
overlaid in both cases. Note the motion of the posters on the wall which slide along the epipolar line.

Example 9.6. Suppose the motion of the cameras is a pure translation with no rotation
and no change in the internal parameters. One may assume thatthe two cameras are
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P = K[I | 0] andP′ = K[I | t]. Then from (9.4) (usingR = I andK = K
′)

F = [e′]×KK
−1 = [e′]×.

If the camera translation is parallel to thex-axis, thene′ = (1, 0, 0)T, so

F =







0 0 0
0 0 −1
0 1 0





 .

The relation between corresponding points,x
′T
Fx = 0, reduces toy = y′, i.e. the

epipolar lines are corresponding rasters. This is the situation that is sought by image
rectification described in section 11.12(p302). △

Indeed if the image pointx is normalized asx = (x, y, 1)T, then from
x = PX = K[I | 0]X, the space point’s (inhomogeneous) coordinates are(X, Y, Z)T =
ZK−1

x, whereZ is the depth of the pointX (the distance ofX from the camera centre
measured along the principal axis of the first camera). It then follows fromx

′ = P
′X =

K[I | t]X that the mapping from an image pointx to an image pointx′ is

x
′ = x + Kt/Z. (9.6)

The motionx′ = x + Kt/Z of (9.6) shows that the image point “starts” atx and then
moves along the line defined byx and the epipolee = e

′ = v. The extent of the motion
depends on the magnitude of the translationt (which is not a homogeneous vector here)
and the inverse depthZ, so that points closer to the camera appear to move faster than
those further away – a common experience when looking out of atrain window.

Note that in this case of pure translationF = [e′]× is skew-symmetric and has only
2 degrees of freedom, which correspond to the position of theepipole. The epipolar
line of x is l

′ = Fx = [e]×x, andx lies on this line sincexT[e]×x = 0, i.e.x, x
′ and

e = e
′ are collinear (assuming both images are overlaid on top of each other). This

collinearity property is termedauto-epipolar, and does not hold for general motion.

General motion. The pure translation case gives additional insight into thegeneral
motion case. Given two arbitrary cameras, we may rotate the camera used for the first
image so that it is aligned with the second camera. This rotation may be simulated
by applying a projective transformation to the first image. Afurther correction may
be applied to the first image to account for any difference in the calibration matrices
of the two images. The result of these two corrections is a projective transformation
H of the first image. If one assumes these corrections to have been made, then the
effective relationship of the two cameras to each other is that of a pure translation.
Consequently, the fundamental matrix corresponding to thecorrected first image and
the second image is of the form̂F = [e′]×, satisfyingx′T

F̂x̂ = 0, wherex̂ = Hx is the
corrected point in the first image. From this one deduces thatx

′T[e′]×Hx = 0, and so
the fundamental matrix corresponding to the initial point correspondencesx ↔ x

′ is
F = [e′]×H. This is illustrated in figure 9.9.
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Fig. 9.9. General camera motion. The first camera (on the left) may be rotated and corrected to
simulate a pure translational motion. The fundamental matrix for the original pair is the productF =
[e′]×H, where[e′]× is the fundamental matrix of the translation, andH is the projective transformation
corresponding to the correction of the first camera.

Example 9.7. Continuing from example 9.2, assume again that the two cameras are
P = K[I | 0] andP′ = K

′[R | t]. Then as described in section 8.4.2(p204) the requisite
projective transformation isH = K

′
RK

−1 = H∞, whereH∞ is the infinite homography
(see section 13.4(p338)), andF = [e′]×H∞.

If the image pointx is normalized asx = (x, y, 1)T, as in example 9.6, then
(X, Y, Z)T = ZK−1

x, and fromx
′ = P

′X = K
′[R | t]X the mapping from an image

pointx to an image pointx′ is

x
′ = K

′
RK

−1
x + K

′
t/Z. (9.7)

The mapping is in two parts: the first term depends on the imageposition alone, i.e.
x, but not the point’s depthZ, and takes account of the camera rotation and change
of internal parameters; the second term depends on the depth, but not on the image
positionx, and takes account of camera translation. In the case of puretranslation
(R = I, K = K

′) (9.7) reduces to (9.6). △

9.3.2 Pure planar motion

In this case the rotation axis is orthogonal to the translation direction. Orthogonality
imposes one constraint on the motion, and it is shown in the exercises at the end of
this chapter that ifK′ = K thenFs, the symmetric part ofF, has rank 2 in this planar
motion case (note, for a general motion the symmetric part ofF has full rank). Thus,
the condition thatdet Fs = 0 is an additional constraint onF and reduces the number
of degrees of freedom from 7, for a general motion, to 6 degrees of freedom for a pure
planar motion.

9.4 Geometric representation of the fundamental matrix

This section is not essential for a first reading and the reader may optionally skip to
section 9.5.

In this section the fundamental matrix is decomposed into its symmetric and skew-
symmetric parts, and each part is given a geometric representation. The symmetric and
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skew-symmetric parts of the fundamental matrix are

Fs =
(

F + F
T
)

/2 Fa =
(

F− F
T
)

/2

so thatF = Fs + Fa.
To motivate the decomposition, consider the pointsX in 3-space that map to the

same point in two images. These image points are fixed under the camera motion
so thatx = x

′. Clearly such points are corresponding and thus satisfyx
T
Fx = 0,

which is a necessary condition on corresponding points. Now, for any skew-symmetric
matrix A the formx

T
Ax is identically zero. Consequently only the symmetric part of

F contributes toxT
Fx = 0, which then reduces toxT

Fsx = 0. As will be seen below
the matrixFs may be thought of as a conic in the image plane.

Geometrically the conic arises as follows. The locus of all points in 3-space for
whichx = x

′ is known as thehoroptercurve. Generally this is a twisted cubic curve in
3-space (see section 3.3(p75)) passing through the two camera centres [Maybank-93].
The image of the horopter is the conic defined byFs. We return to the horopter in
chapter 22.

Symmetric part. The matrixFs is symmetric and is of rank 3 in general. It has 5
degrees of freedom and is identified with a point conic, called theSteiner conic(the
name is explained below). The epipolese ande

′ lie on the conicFs. To see that the
epipoles lie on the conic, i.e. thate

T
Fse = 0, start fromFe = 0. Thene

T
Fe = 0 and

soe
T
Fse + e

T
Fae = 0. However,eT

Fae = 0, since for any skew-symmetric matrix
S, xT

Sx = 0. ThuseT
Fse = 0. The derivation fore′ follows in a similar manner.

Skew-symmetric part. The matrixFa is skew-symmetric and may be written as
Fa = [xa]×, wherexa is the null-vector ofFa. The skew-symmetric part has 2
degrees of freedom and is identified with the pointxa.

The relation between the pointxa and conicFs is shown in figure 9.10a. The polar
of xa intersects the Steiner conicFs at the epipolese ande

′ (the pole–polar relation is
described in section 2.2.3(p30)). The proof of this result is left as an exercise.

Epipolar line correspondence. It is a classical theorem of projective geometry due
to Steiner [Semple-79] that for two line pencils related by ahomography, the locus
of intersections of corresponding lines is a conic. This is precisely the situation here.
The pencils are the epipolar pencils, one throughe and the other throughe′. The
epipolar lines are related by a 1D homography as described insection 9.2.5. The locus
of intersection is the conicFs.

The conic and epipoles enable epipolar lines to be determined by a geometric con-
struction as illustrated in figure 9.10b. This constructionis based on the fixed point
property of the Steiner conicFs. The epipolar linel = x × e in the first view defines
an epipolar plane in 3-space which intersects the horopter in a point, which we will
call Xc. The pointXc is imaged in the first view atxc, which is the point at whichl
intersects the conicFs (sinceFs is the image of the horopter). Now the image ofXc is
alsoxc in the second view due to the fixed-point property of the horopter. Soxc is the
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Fig. 9.10. Geometric representation ofF. (a) The conicFs represents the symmetric part ofF, and the
pointxa the skew-symmetric part. The conicFs is the locus of intersection of corresponding epipolar
lines, assuming both images are overlaid on top of each other. It is the image of the horopter curve. The
line la is the polar ofxa with respect to the conicFs. It intersects the conic at the epipolese ande′.
(b) The epipolar linel′ corresponding to a pointx is constructed as follows: intersect the line defined by
the pointse andx with the conic. This intersection point isxc. Thenl′ is the line defined by the points
xc ande′.

image in the second view of a point on the epipolar plane ofx. It follows thatxc lies
on the epipolar linel′ of x, and consequentlyl′ may be computed asl′ = xc × e

′.
The conic together with two points on the conic account for the 7 degrees of freedom

of F: 5 degrees of freedom for the conic and one each to specify thetwo epipoles on
the conic. GivenF, then the conicFs, epipolese, e′ and skew-symmetric pointxa are
defined uniquely. However,Fs andxa do not uniquely determineF since the identity
of the epipoles is not recovered, i.e. the polar ofxa determines the epipoles but does
not determine which one ise and which onee′.

9.4.1 Pure planar motion

We return to the case of planar motion discussed above in section 9.3.2, whereFs has
rank 2. It is evident that in this case the Steiner conic is degenerate and from section
2.2.3(p30) is equivalent to two non-coincident lines:

Fs = lhl
T

s
+ lsl

T

h

as depicted in figure 9.11a. The geometric construction of the epipolar linel′ corre-
sponding to a pointx of section 9.4 has a simple algebraic representation in thiscase.
As in the general motion case, there are three steps, illustrated in figure 9.11b: first
the linel = e × x joining e andx is computed; second, its intersection point with the
“conic” xc = ls × l is determined; third the epipolar linel′ = e

′ × xc is the join ofxc

ande
′. Putting these steps together we find

l
′ = e

′ × [ls × (e × x)] = [e′]×[ls]×[e]×x.

It follows thatF may be written as

F = [e′]×[ls]×[e]×. (9.8)

The 6 degrees of freedom ofF are accounted for as 2 degrees of freedom for each of
the two epipoles and 2 degrees of freedom for the line.
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Fig. 9.11. Geometric representation ofF for planar motion. (a) The linesls and lh constitute the
Steiner conic for this motion, which is degenerate. Comparethis figure with the conic for general
motion shown in figure 9.10. (b) The epipolar linel′ corresponding to a pointx is constructed as
follows: intersect the line defined by the pointse andx with the (conic) linels. This intersection point
is xc. Thenl′ is the line defined by the pointsxc ande′.

The geometry of this situation can be easily visualized: thehoropter for this motion
is a degenerate twisted cubic consisting of a circle in the plane of the motion (the plane
orthogonal to the rotation axis and containing the camera centres), and a line parallel
to the rotation axis and intersecting the circle. The line isthe screw axis (see section
3.4.1(p77)). The motion is equivalent to a rotation about the screw axis with zero
translation. Under this motion points on the screw axis are fixed, and consequently
their images are fixed. The linels is the image of the screw axis. The linelh is the
intersection of the image with the plane of the motion. This geometry is used for auto-
calibration in chapter 19.

9.5 Retrieving the camera matrices

To this point we have examined the properties ofF and of image relations for a point
correspondencex ↔ x

′. We now turn to one of the most significant properties ofF,
that the matrix may be used to determine the camera matrices of the two views.

9.5.1 Projective invariance and canonical cameras

It is evident from the derivations of section 9.2 that the mapl
′ = Fx and the correspon-

dence conditionx′T
Fx = 0 areprojectiverelationships: the derivations have involved

only projective geometric relationships, such as the intersection of lines and planes, and
in the algebraic development only the linear mapping of the projective camera between
world and image points. Consequently, the relationships depend only on projective co-
ordinates in the image, and not, for example on Euclidean measurements such as the
angle between rays. In other words the image relationships are projectively invariant:
under a projective transformation of the image coordinatesx̂ = Hx, x̂′ = H

′
x
′, there is a

corresponding map̂l
′

= F̂x̂ with F̂ = H
′−T

FH
−1 the corresponding rank 2 fundamental

matrix.
Similarly, F only depends on projective properties of the camerasP, P′. The camera

matrix relates 3-space measurements to image measurementsand so depends on both
the image coordinate frame and the choice of world coordinate frame. F does not
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depend on the choice of world frame, for example a rotation ofworld coordinates
changesP, P′, but notF. In fact, the fundamental matrix is unchanged by a projective
transformation of 3-space. More precisely,

Result 9.8. If H is a 4 × 4 matrix representing a projective transformation of 3-space,
then the fundamental matrices corresponding to the pairs ofcamera matrices(P, P′)
and(PH, P′H) are the same.

Proof. Observe thatPX = (PH)(H−1X), and similarly forP′. Thus if x ↔ x
′ are

matched points with respect to the pair of cameras(P, P′), corresponding to a 3D point
X, then they are also matched points with respect to the pair ofcameras(PH, P′H),
corresponding to the pointH−1

X.

Thus, although from (9.1–p244) a pair of camera matrices(P, P′) uniquely determine a
fundamental matrixF, the converse is not true. The fundamental matrix determines the
pair of camera matrices at best up to right-multiplication by a 3D projective transfor-
mation. It will be seen below that this is the full extent of the ambiguity, and indeed the
camera matrices are determined up to a projective transformation by the fundamental
matrix.

Canonical form of camera matrices. Given this ambiguity, it is common to define
a specificcanonical formfor the pair of camera matrices corresponding to a given
fundamental matrix in which the first matrix is of the simple form [I | 0], whereI is
the3 × 3 identity matrix and0 a null 3-vector. To see that this is always possible, let
P be augmented by one row to make a4 × 4 non-singular matrix, denotedP∗. Now
lettingH = P

∗−1, one verifies thatPH = [I | 0] as desired.
The following result is very frequently used

Result 9.9. The fundamental matrix corresponding to a pair of camera matricesP =
[I | 0] andP′ = [M | m] is equal to[m]×M.

This is easily derived as a special case of (9.1–p244).

9.5.2 Projective ambiguity of cameras givenF

It has been seen that a pair of camera matrices determines a unique fundamental matrix.
This mapping is not injective (one-to-one) however, since pairs of camera matrices that
differ by a projective transformation give rise to the same fundamental matrix. It will
now be shown that this is the only ambiguity. We will show thata given fundamental
matrix determines the pair of camera matrices up to right multiplication by a projective
transformation. Thus, the fundamental matrix captures theprojective relationship of
the two cameras.

Theorem 9.10.LetF be a fundamental matrix and let(P, P′) and(P̃, P̃
′

) be two pairs of
camera matrices such thatF is the fundamental matrix corresponding to each of these
pairs. Then there exists a non-singular4 × 4 matrixH such that̃P = PH andP̃

′

= P
′
H.
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Proof. Suppose that a given fundamental matrixF corresponds to two different pairs
of camera matrices(P, P′) and (P̃, P̃

′

). As a first step, we may simplify the problem
by assuming that each of the two pair of camera matrices is in canonical form with
P = P̃ = [I | 0], since this may be done by applying projective transformations to
each pair as necessary. Thus, suppose thatP = P̃ = [I | 0] and thatP′ = [A | a]
andP̃

′

= [Ã | ã]. According to result 9.9 the fundamental matrix may then be written
F = [a]×A = [ã]×Ã.
We will need the following lemma:

Lemma 9.11. Suppose the rank 2 matrixF can be decomposed in two different ways
asF = [a]×A andF = [ã]×Ã; then ã = ka and Ã = k−1(A + av

T) for some non-zero
constantk and 3-vectorv.

Proof. First, note thataT
F = a

T[a]×A = 0, and similarly,ãT
F = 0. SinceF has

rank 2, it follows that̃a = ka as required. Next, from[a]×A = [ã]×Ã it follows that
[a]×

(

kÃ− A

)

= 0, and sokÃ − A = av
T for somev. Hence,̃A = k−1(A + av

T) as
required.

Applying this result to the two camera matricesP
′ andP̃

′

shows thatP′ = [A | a] and
P̃
′

= [k−1(A+av
T) | ka] if they are to generate the sameF. It only remains now to show

that these camera pairs are projectively related. LetH be the matrixH =

[

k−1
I 0

k−1
v

T k

]

.

Then one verifies thatPH = k−1[I | 0] = k−1
P̃, and furthermore,

P
′
H = [A | a]H = [k−1(A + av

T) | ka] = [Ã | ã] = P̃
′

so that the pairsP, P′ andP̃, P̃
′

are indeed projectively related.

This can be tied precisely to a counting argument: the two camerasP andP′ each
have 11 degrees of freedom, making a total of 22 degrees of freedom. To specify a
projective world frame requires 15 degrees of freedom (section 3.1(p65)), so once the
degrees of freedom of the world frame are removed from the twocameras22− 15 = 7
degrees of freedom remain – which corresponds to the 7 degrees of freedom of the
fundamental matrix.

9.5.3 Canonical cameras givenF

We have shown thatF determines the camera pair up to a projective transformation of
3-space. We will now derive a specific formula for a pair of cameras with canonical
form givenF. We will make use of the following characterization of the fundamental
matrixF corresponding to a pair of camera matrices:

Result 9.12.A non-zero matrixF is the fundamental matrix corresponding to a pair of
camera matricesP andP′ if and only ifP′TFP is skew-symmetric.

Proof. The condition thatP′TFP is skew-symmetric is equivalent toXT
P
′T
FPX = 0

for all X. Settingx′ = P
′X andx = PX, this is equivalent tox′T

Fx = 0, which is the
defining equation for the fundamental matrix.
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One may write down a particular solution for the pairs of camera matrices in canon-
ical form that correspond to a fundamental matrix as follows:

Result 9.13.Let F be a fundamental matrix andS any skew-symmetric matrix. Define
the pair of camera matrices

P = [I | 0] and P
′ = [SF | e′],

wheree
′ is the epipole such thate′T

F = 0, and assume thatP′ so defined is a valid
camera matrix (has rank 3). ThenF is the fundamental matrix corresponding to the
pair (P, P′).

To demonstrate this, we invoke result 9.12 and simply verifythat

[SF | e′]TF[I | 0] =

[

F
T
S

T
F 0

e
′T
F 0

]

=

[

F
T
S

T
F 0

0
T 0

]

(9.9)

which is skew-symmetric.
The skew-symmetric matrixS may be written in terms of its null-vector asS = [s]×.

Then[[s]×F | e
′] has rank 3 providedsT

e
′ 6= 0, according to the following argument.

Sincee′
F = 0, the column space (span of the columns) ofF is perpendicular toe′. But

if s
T
e
′ 6= 0, thens is not perpendicular toe′, and hence not in the column space ofF.

Now, the column space of[s]×F is spanned by the cross-products ofs with the columns
of F, and therefore equals the plane perpendicular tos. So [s]×F has rank 2. Sincee′

is not perpendicular tos, it does not lie in this plane, and so[[s]×F | e
′] has rank 3, as

required.
As suggested by Luong and Viéville [Luong-96] a good choicefor S is S = [e′]×, for

in this casee′T
e
′ 6= 0, which leads to the following useful result.

Result 9.14.The camera matrices corresponding to a fundamental matrixF may be
chosen asP = [I | 0] andP′ = [[e′]×F | e′].

Note that the camera matrixP′ has left3 × 3 submatrix[e′]×F which has rank 2. This
corresponds to a camera with centre onπ∞. However, there is no particular reason to
avoid this situation.

The proof of theorem 9.10 shows that the four parameter family of camera pairs in
canonical form̃P = [I | 0], P̃

′

= [A + av
T | ka] have the same fundamental matrix as

the canonical pair,P = [I | 0], P′ = [A | a]; and that this is the most general solution.
To summarize:

Result 9.15.The general formula for a pair of canonic camera matrices corresponding
to a fundamental matrixF is given by

P = [I | 0] P
′ = [[e′]×F + e

′
v

T | λe
′] (9.10)

wherev is any 3-vector, andλ a non-zero scalar.
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9.6 The essential matrix

The essential matrix is the specialization of the fundamental matrix to the case of
normalized image coordinates (see below). Historically, the essential matrix was in-
troduced (by Longuet-Higgins) before the fundamental matrix, and the fundamental
matrix may be thought of as the generalization of the essential matrix in which the
(inessential) assumption of calibrated cameras is removed. The essential matrix has
fewer degrees of freedom, and additional properties, compared to the fundamental ma-
trix. These properties are described below.

Normalized coordinates. Consider a camera matrix decomposed asP = K[R | t],
and letx = PX be a point in the image. If the calibration matrixK is known, then we
may apply its inverse to the pointx to obtain the point̂x = K

−1
x. Thenx̂ = [R | t]X,

wherex̂ is the image point expressed innormalized coordinates. It may be thought of
as the image of the pointX with respect to a camera[R | t] having the identity matrixI
as calibration matrix. The camera matrixK−1

P = [R | t] is called anormalized camera
matrix, the effect of the known calibration matrix having been removed.

Now, consider a pair of normalized camera matricesP = [I | 0] andP′ = [R | t]. The
fundamental matrix corresponding to the pair of normalizedcameras is customarily
called theessential matrix, and according to (9.2–p244) it has the form

E = [t]×R = R [RT
t]×.

Definition 9.16. The defining equation for the essential matrix is

x̂
′T
Ex̂ = 0 (9.11)

in terms of the normalized image coordinates for corresponding pointsx ↔ x
′.

Substituting forx̂ andx̂
′ givesx

′T
K
′−T

EK
−1

x = 0. Comparing this with the relation
x
′T
Fx = 0 for the fundamental matrix, it follows that the relationship between the

fundamental and essential matrices is

E = K
′T
FK. (9.12)

9.6.1 Properties of the essential matrix

The essential matrix,E = [t]×R, has only five degrees of freedom: both the rotation
matrix R and the translationt have three degrees of freedom, but there is an overall
scale ambiguity – like the fundamental matrix, the essential matrix is a homogeneous
quantity.

The reduced number of degrees of freedom translates into extra constraints that are
satisfied by an essential matrix, compared with a fundamental matrix. We investigate
what these constraints are.

Result 9.17.A3×3 matrix is an essential matrix if and only if two of its singular values
are equal, and the third is zero.
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Proof. This is easily deduced from the decomposition ofE as[t]×R = SR, whereS is
skew-symmetric. We will use the matrices

W =







0 −1 0
1 0 0
0 0 1





 and Z =







0 1 0
−1 0 0
0 0 0





 . (9.13)

It may be verified thatW is orthogonal andZ is skew-symmetric. From Result 4.1-
(p581), which gives a block decomposition of a general skew-symmetric matrix, the
3 × 3 skew-symmetric matrixS may be written asS = kUZUT whereU is orthogonal.
Noting that, up to sign,Z = diag(1, 1, 0)W, then up to scale,S = U diag(1, 1, 0)WUT, and
E = SR = U diag(1, 1, 0)(WUT

R). This is a singular value decomposition ofE with two
equal singular values, as required. Conversely, a matrix with two equal singular values
may be factored asSR in this way.

Since E = U diag(1, 1, 0)VT, it may seem thatE has six degrees of freedom
and not five, since bothU and V have three degrees of freedom. However, be-
cause the two singular values are equal, the SVD is not unique– in fact there is
a one-parameter family of SVDs forE. Indeed, an alternative SVD is given by
E = (U diag(R2×2, 1)) diag(1, 1, 0)(diag(RT

2×2, 1))VT for any2 × 2 rotation matrixR.

9.6.2 Extraction of cameras from the essential matrix

The essential matrix may be computed directly from (9.11) using normalized image
coordinates, or else computed from the fundamental matrix using (9.12). (Methods
of computing the fundamental matrix are deferred to chapter11). Once the essential
matrix is known, the camera matrices may be retrieved fromE as will be described next.
In contrast with the fundamental matrix case, where there isa projective ambiguity, the
camera matrices may be retrieved from the essential matrix up to scale and a four-fold
ambiguity. That is there are four possible solutions, except for overall scale, which
cannot be determined.

We may assume that the first camera matrix isP = [I | 0]. In order to compute the
second camera matrix,P′, it is necessary to factorE into the productSR of a skew-
symmetric matrix and a rotation matrix.

Result 9.18.Suppose that the SVD ofE is U diag(1, 1, 0)VT. Using the notation of
(9.13), there are (ignoring signs) two possible factorizationsE = SR as follows:

S = UZU
T

R = UWV
T or UW

T
V

T . (9.14)

Proof. That the given factorization is valid is true by inspection.That there are no
other factorizations is shown as follows. SupposeE = SR. The form ofS is determined
by the fact that its left null-space is the same as that ofE. HenceS = UZU

T. The
rotationR may be written asUXVT, whereX is some rotation matrix. Then

U diag(1, 1, 0)VT = E = SR = (UZUT)(UXVT) = U(ZX)VT

from which one deduces thatZX = diag(1, 1, 0). SinceX is a rotation matrix, it follows
thatX = W or X = W

T, as required.
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The factorization (9.14) determines thet part of the camera matrixP′, up to scale,
from S = [t]×. However, the Frobenius norm ofS = UZU

T is
√

2, which means
that if S = [t]× including scalethen ‖t‖ = 1, which is a convenient normaliza-
tion for the baseline of the two camera matrices. SinceSt = 0, it follows that
t = U (0, 0, 1)T = u3, the last column ofU. However, the sign ofE, and consequentlyt,
cannot be determined. Thus, corresponding to a given essential matrix, there are four
possible choices of the camera matrixP′, based on the two possible choices ofR and
two possible signs oft. To summarize:

Result 9.19.For a given essential matrixE = U diag(1, 1, 0)VT, and first camera matrix
P = [I | 0], there are four possible choices for the second camera matrix P′, namely

P
′ = [UWVT | +u3] or [UWVT | −u3] or [UWT

V
T | +u3] or [UWT

V
T | −u3].

9.6.3 Geometrical interpretation of the four solutions

It is clear that the difference between the first two solutions is simply that the direction
of the translation vector from the first to the second camera is reversed.

The relationship of the first and third solutions in result 9.19 is a little more compli-
cated. However, it may be verified that

[UWT
V

T | u3] = [UWVT | u3]

[

VW
T
W

T
V

T

1

]

andVWT
W

T
V

T = V diag(−1,−1, 1)VT is a rotation through180◦ about the line joining
the two camera centres. Two solutions related in this way areknown as a “twisted
pair”.

The four solutions are illustrated in figure 9.12, where it isshown that a reconstructed
pointX will be in front of both cameras in one of these four solutionsonly. Thus, testing
with a single point to determine if it is in front of both cameras is sufficient to decide
between the four different solutions for the camera matrixP

′.
Note. The point of view has been taken here that the essential matrix is a homogeneous
quantity. An alternative point of view is that the essentialmatrix is defined exactly by
the equationE = [t]×R, (i.e. including scale), and is determined only up to indetermi-
nate scale by the equationx′T

Ex = 0. The choice of point of view depends on which
of these two equations one regards as the defining property ofthe essential matrix.

9.7 Closure

9.7.1 The literature

The essential matrix was introduced to the computer vision community by Longuet-
Higgins [LonguetHiggins-81], with a matrix analogous toE appearing in the pho-
togrammetry literature, e.g. [VonSanden-08]. Many properties of the essential matrix
have been elucidated particularly by Huang and Faugeras [Huang-89], [Maybank-93],
and [Horn-90].

The realization that the essential matrix could also be applied in uncalibrated situa-
tions, as it represented a projective relation, developed in the early part of the 1990s,
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Fig. 9.12. The four possible solutions for calibrated reconstructionfrom E. Between the left and
right sides there is a baseline reversal. Between the top andbottom rows camera B rotates180◦ about
the baseline. Note, only in (a) is the reconstructed point infront of both cameras.

and was published simultaneously by Faugeras [Faugeras-92b, Faugeras-92a], and
Hartleyet al. [Hartley-92a, Hartley-92c].

The special case of pure planar motion was examined by [Maybank-93] for the
essential matrix. The corresponding case for the fundamental matrix is investigated
by Beardsley and Zisserman [Beardsley-95a] and Viéville and Lingrand [Vieville-95],
where further properties are given.

9.7.2 Notes and exercises

(i) Fixating cameras. Suppose two cameras fixate on a point in space such that
their principal axes intersect at that point. Show that if the image coordinates
are normalized so that the coordinate origin coincides withthe principal point
then theF33 element of the fundamental matrix is zero.

(ii) Mirror images. Suppose that a camera views an object and its reflection in a
plane mirror. Show that this situation is equivalent to two views of the object,
and that the fundamental matrix is skew-symmetric. Comparethe fundamental
matrix for this configuration with that of: (a) a pure translation, and (b) a pure
planar motion. Show that the fundamental matrix is auto-epipolar (as is (a)).

(iii) Show that if the vanishing line of a plane contains the epipole then the plane is
parallel to the baseline.

(iv) Steiner conic.Show that the polar ofxa intersects the Steiner conicFs at the
epipoles (figure 9.10a). Hint, start fromFe = Fse + Fae = 0. Sincee lies on
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the conicFs, thenl1 = Fse is the tangent line ate, andl2 = Fae = [xa]×e =
xa × e is a line throughxa ande.

(v) The affine type of the Steiner conic (hyperbola, ellipse or parabola as given in
section 2.8.2(p59)) depends on the relative configuration of the two cameras.
For example, if the two cameras are facing each other then theSteiner conic
is a hyperbola. This is shown in [Chum-03] where further results on oriented
epipolar geometry are given.

(vi) Planar motion. It is shown by [Maybank-93] that if the rotation axis direction
is orthogonal or parallel to the translation direction thenthe symmetric part of
the essential matrix has rank 2. We assume here thatK = K

′. Then from (9.12),
F = K

−T
EK

−1, and so

Fs = (F + F
T)/2 = K

−T(E + E
T)K−1/2 = K

−T
EsK−1.

It follows from det(Fs) = det(K−1)2 det(Es) that the symmetric part ofF is
also singular. Does this result hold ifK 6= K

′?
(vii) Any matrix F of rank 2 is the fundamental matrix corresponding to some pair of

camera matrices(P, P′) This follows directly from result 9.14 since the solution
for the canonical cameras depends only on the rank 2 propertyof F.

(viii) Show that the 3D points determined from one of the ambiguous reconstructions
obtained fromE are related to the corresponding 3D points determined from
another reconstruction by either (i) an inversion through the second camera
centre; or (ii) a harmonic homology of 3-space (see section 7.2(p629)), where
the homology plane is perpendicular to the baseline and through the second
camera centre, and the vertex is the first camera centre.

(ix) Following a similar development to section 9.2.2, derive the form of the fun-
damental matrix for two linear pushbroom cameras. Details of this matrix are
given in [Gupta-97] where it is shown that affine reconstruction is possible from
a pair of images.


