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This documentation summarizes the work done in developing vehicle models using
both explicit steering (DARPA Grand Challenge car [1], Agile Robotics forklift) and
skid steering (Agile Robotics rover, iRobot). Section 1 details the vehicle model for
explicit steering, while Section 2 details the vehicle model for skid steering. Section 3
provides additional information which different readers may find useful:

• RRTeam members: Section 3.1 lists the measured values of vehicle parameters
for the iRobot, gives linearized vehicle dynamics, and summarizes the rules of
the ACL Robotics Challenge.

• Vishnu: Section 3.2 outlines the tasks moving forward in controlling the Pioneer
rovers, including driving a skid-steered vehicle with pure pursuit and experimen-
tally measuring the vehicle model parameters.

Note that Ref. [2] considers a similar comparison of vehicle steering models.

1 Explicit Steering
In the explicit steering model, there are separate, decoupled inputs for speed control
and steering control. Steering is controlled by physically rotating one or both of the
vehicle axes; all wheels move at the same speed.

Figure 1 shows a diagram of the explicit steering vehicle model. In this figure, x and
y are the coordinate directions; θ is the heading, measured counterclockwise from the
+x axis; δ is the steering angle, measured counterclockwise from θ ; v is the vehicle
speed; and L is the characteristic length, here the distance between the center of the
front and rear axles.

The simplest system model for this vehicle is

ẋ = vcosθ , (1)
ẏ = vsinθ , (2)

θ̇ =
v
L

tanδ . (3)

In this case, the state vector is (x,y,θ), while the input vector is (v,δ ).
Often, the vehicle speed is controlled indirectly, by appling some acceleration force.
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Figure 1: Explicit steering model for a wheeled vehicle.

Then the system model takes the form

ẋ = vcosθ , (4)
ẏ = vsinθ , (5)

θ̇ =
v
L

tanδ , (6)

v̇ = a, (7)

where a is the vehicle acceleration. In this case, the state vector is (x,y,θ ,v), while the
input vector is (δ ,a).

Furthermore, it is typically the case that the acceleration and steering inputs cannot
be applied instantaneously, and will have some delay before the desired values are
achieved. This can be modeled by adding first-order reference dynamics to the system,
such that

ẋ = vcosθ , (8)
ẏ = vsinθ , (9)

θ̇ =
v
L

tanδ , (10)

δ̇ =
1
Tδ

(δR−δ ), (11)

v̇ = a, (12)

ȧ =
1
Ta

(aR−a), (13)

where δR is the reference steering angle, aR is the reference acceleration, and Tδ and Ta
are their respective time constants. In this case, the state vector is (x,y,θ ,δ ,v,a), while
the input vector is (δR,aR).

The model for the DARPA Grand Challenge [1] and Agile Robotics vehicles adds
an additional sideslip term into (3),

θ̇ =
v
L

tanδ
1

1+(v/vCH)2 , (14)
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Table 1: DGC Vehicle Parameters

Parameter Name Value
L Characteristic length 2.855 m

vCH Characteristic velocity 20.0 m/s
Tδ Steering time constant 0.05 s
Ta Acceleration time constant 0.3 s

amin Minimum acceleration -6.0 m/s2

amax Maximum acceleration 1.8 m/s2

δmax Maximum steering angle 0.5435 rad
δ̇max Maximum slew rate 0.3294 rad/s

where vCH is termed the characteristic velocity.
The constraints on the vehicle are as follows:

amin ≤ a≤ amax, (15)
‖δ‖ ≤ δmax, (16)
‖δ̇‖ ≤ δ̇max, (17)

where amin is the minimum acceleration (which may be negative), amax is the maximum
acceleration, δmax is the maximum steering angle, and δ̇max is the maximum slew rate.

Finally, Table 1 lists the values of the parameters used on the DGC vehicle [1].

2 Skid Steering Model
In the skid steering model, the inputs to the vehicle are exclusively the speed of the
wheels on each side of the vehicle. Unlike in the explicit steering model, the wheel
speeds on each side of the vehicle are allowed to take different values, and may even
be moving in opposite directions. This gives the vehicle capabilities not achievable
with explicit steering, such as being able to rotate in place (zero turning radius). If the
vehicle has more than 1 wheel on each side, all wheels on the same side of the vehicle
are linked to the same speed. However, neither axis is ever rotated; the position of all
wheels is fixed. Thus, skidding is actually necessary for the vehicle to turn (hence the
name).

There are two ways to represent the speed inputs for the skid steering model. The
most intuitive way is to treat the speed on each side as a separate input. In this case,
the input vector is (vL,vR), where vL is the speed of the left-side wheels, and vR is
the speed of the right-side wheels. An alternative formulation, useful for deriving the
vehicle model, uses the input vector (v,∆v), where v is the mean wheel speed and ∆v is
the wheel speed differential. The relationship between these two input formulations is

vL = v− 1
2

∆v, (18)

vR = v+
1
2

∆v. (19)

Again, note that vL and/or vR may take on negative values, within whatever constraints
are in place.
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Figure 2 shows a diagram of the skid steering vehicle model. In this figure, x and
y are the coordinate directions; θ is the heading, measured counterclockwise from the
+x axis; v is the mean wheel speed; vL and vR are the left wheel and right wheel speeds,
respectively; and L is the characteristic length, here the length of the wheel axle. If the
vehicle is performing a turn, then let R denote the turning radius and θ̇ denote the turn
rate, which is positive in the counterclockwise direction.

Figure 2: Skid steering model for a wheeled vehicle.

The skid steering state-space model is now derived. The translational dynamics are
the same as (1)-(2) for the explicit steering model,

ẋ = vcosθ , (20)
ẏ = vsinθ . (21)

To derive the steering dynamics, we apply the relationship between linear and angular
velocity to both sets of wheels and the axle center [3]:

vL =
(

R− 1
2

L
)

θ̇ , (22)

vR =
(

R+
1
2

L
)

θ̇ , (23)

v = Rθ̇ . (24)

Combine (22)-(23) and simplify:
vL

R− 1
2 L

=
vR

R+ 1
2 L

vL

(
R+

1
2

L
)

= vR

(
R− 1

2
L
)

1
2

L(vL + vR) = R(vR− vL)
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Applying (18)-(19) to this last equation yields

Lv = R(vR− vL)

Finally, insert (24) to arrive at the desired relationship,

θ̇ =
∆v
L

. (25)

In summary, by combining (20)-(21) and (25) the simplest system model for a skid
steering vehicle is

ẋ = vcosθ ,

ẏ = vsinθ ,

θ̇ =
∆v
L

.

In this case, the state vector is (x,y,θ), while the input vector is (v,∆v). This can also
be written using the input vector (vL,vR) as

ẋ =
1
2

vR cosθ +
1
2

vL cosθ , (26)

ẏ =
1
2

vR sinθ +
1
2

vL sinθ , (27)

θ̇ =
1
L

vR−
1
L

vL. (28)

Similar to before, it is typically the case that the speed inputs cannot be applied
instantaneously, and will have some delay before the desired values are achieved. This
can be modeled by adding first-order reference dynamics to the system, such that

ẋ =
1
2

vR cosθ +
1
2

vL cosθ , (29)

ẏ =
1
2

vR sinθ +
1
2

vL sinθ , (30)

θ̇ =
1
L

vR−
1
L

vL, (31)

v̇R =
1
Tv

vre f
R −

1
Tv

vR, (32)

v̇L =
1
Tv

vre f
L −

1
Tv

vL, (33)

where vre f
R and vre f

L are the reference right and left wheel speeds, respectively, and Tv is
the speed time constant (assumed due to the symmetry to be the same for all wheels). In
this case, the state vector is (x,y,θ ,vR,vL), while the input vector is (vre f

R ,vre f
L ). Similar

dynamics can be derived using (v,∆v), but it is not as intuitive.
The constraints on the vehicle are as follows:

vmin ≤ vL ≤ vmax, (34)
vmin ≤ vR ≤ vmax, (35)

where vmin is the minmum wheel speed (which may be negative) and vmax is the maxi-
mum wheel speed, both of which are symmetric for both sets of wheels.
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Table 2: iRobot Vehicle Parameters

Parameter Name Value
L Characteristic length 0.262 m
Tv Speed time constant 0.025 s

vmin Minimum speed -0.5 m/s
vmax Maximum speed 0.5 m/s

Figure 3: The iRobot Create robot.

3 Supplemental Information
This section provides some additional information relevant to specific projects using
skid steering vehicles.

3.1 ACL Robotics Challenge (RRTeam)
Table 2 lists the values of the parameters for the iRobot vehicle (figure 3), also referred
to as the G-PUCC (Ground Platform for Unmanned Cooperative Control). The charac-
teristic length was measured, and the speed limits are documented in the iRobot code.
The time constant was estimated by observing that the rover increased its speed from
0.1 m/s to 0.4 m/s in 1/8th of a second, and adjusting the time constant until the 99%
rise time matched this duration.

For some controllers and other applications, it may be useful to have a linearized
model of the vehicle. The linearized model for (29)-(33) is

ẋ
ẏ
θ̇

v̇R
v̇L

=


0 0 − 1

2 vR sinθ − 1
2 vL sinθ

1
2 cosθ

1
2 cosθ

0 0 1
2 vR cosθ + 1

2 vL cosθ
1
2 sinθ

1
2 sinθ

0 0 0 1
L − 1

L
0 0 0 − 1

Tv
0

0 0 0 0 − 1
Tv




x
y
θ

vR
vL

+


0 0
0 0
0 0
1
Tv

0
0 1

Tv


[

vre f
R

vre f
L

]
.

Finally, a summary of the rules for the ACL Robotics Challenge follows.

• RRTeam Members: Dan, Georges, Brandon, Mangal, Luke

• Objective: design paths from A to B in minimum time with zero contacts

– Contact is heavy penalty or disqualification

– If contact is with adversary, any team’s bot whose bumper activates is at
fault
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• Hardware: iRobot Create

– No hardware mods allowed

• Environment: RAVEN testbed, with (1) 6-8 drones, (2) 1 adversary, and (3)
obstacles

1. Drones
– Also iRobots, but fully autonomous
– Move in rectilinear paths: segments of forward motion interlaced with

(zero turning radius) rotations
– After contact or some duration of time, changes direction
– Varying speeds, all lower than our vehicle
– Each vehicle will probably have fixed parameters (time to rotate, rota-

tion angle distribution, speed, etc.)
∗ May or may not be deterministic for each individual drone
∗ Adds possibility of learning a vehicle’s behavior over time

2. Adversary
– iRobot of another team, completing course at same time

3. Obstacles
– Includes pole and possibly artificial obstacles
– All relevant obstacles will have a Vicon stream available

3.2 Agile Robotics Rover
The Pioneer 3-AT rover (Figure 4), to be used in the Agile Robotics program, has
fundamentally the same slip steering vehicle model as the iRobots. (It is still un-
clear whether it is controlled using the inputs (vR,vL) or the inputs (v,∆v).) However,
whereas the iRobot has only 2 wheels, the Pioneer rover has 4, with the two wheels on
each side linked to the same speed. This configuration limits the ability of the vehicle
to slip/skid, and thus limits its steering control authority. One way to represent this loss
of control is to use in (31) an effective characteristic length, L′, which is larger than the
actual characteristic length. In Ref. [3], for example, L = 0.4 m and L′ = 0.58 m.

I have a separate page of instructions for installing the MobileRobots software
(ARIA libraries and MobileSim), which is available to anyone interested. The current
task list in developing a control scheme for these rovers is below.

• Finish putting together the infrastructure needed to run these rovers in the
RAVEN testbed. This includes but is not limited to:

– Adding reflective dots to the rover and adding models in Vicon/Motion
Analysis.

– Figure out how to best do wireless vehicle control. We tried VNC today,
but the fidelity of the connection did not seem sufficient for teleoperation
(though it would probably be fine for running autonomous software). Fur-
thermore, we had to connect via MIT wireless, because we could not con-
nect to the “ravenbridge” router. Would it be possible to set up a wire-
less access point on the rover which external computers can connect to?
(I’m bringing a wireless router into work this week.) Another option is the
ArNetworking open-source software in the Aria libraries.
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Figure 4: The Pioneer 3-AT robot.

– Possibly set up other rovers in the same way.

• Write some basic software to allow autonomous control of the vehicle. To
determine what the control signals are that are actually sent to the rover, one
place to start would be to look at the code for the program demo which allows
for teleoperational control via the arrow keys. The capability to receive Vicon
data needs to be added. Additionally, a separate Makefile needs to be written
(the code currently uses an existing Makefile).

• Determine how well the vehicle can be controlled using conventional pure
pursuit. Our sense is that the control laws generated by pure pursuit are not
specific to explicit-steering vehicles, and can also be applied to skid-steering
vehicles (through ∆v). To maintain some parallelism and avoid writing too much
code, we’d like to be able to run the AR code (which uses pure pursuit) directly
on the vehicle. However, some capabilities are not achievable in pure pursuit,
such as rotating in place. Thus, a critical test is to implement and test this on
a rover to see how useful the control scheme is. Useful resources for writing
this implementation include Refs. [1,4], Sergio’s FIDO code, and Georges’ Ford
code.

• Identify an accurate model of the rover’s true behavior. To use the rovers
in Agile Robotics, we will need a precise system model, beyond just the ap-
proximate equations (29)-(33). This will probably require the computation of an
input-to-output mapping, such as (vre f

R ,vre f
L ) 7→ (v′, θ̇ ′) or (vre f ,∆vre f ) 7→ (v′, θ̇ ′),

where ′ denotes a measured value. Such a mapping should be very similar to the
work done in deriving Sergio’s vehicle model for FIDO. In Ref. [3], the proposed
approach is to measure the turning radius R′ and period T ′ of the vehicle for a
fixed set of inputs. These can be used to compute other quantities, such as the
true velocity v′, angular velocity θ̇ ′, and characteristic length L′:

v′ = 2πR′/T ′,

θ̇
′ = 2π/T ′,

L′ = ∆v/θ̇
′.
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