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5 Mobile Robot Localization

5.1 Introduction

Navigation is one of the most challenging competencies required of a mobile robot. Success
in navigation requires success at the four building blocks of navigation (fig. 5.2): percep-
tion- the robot must interpret its sensors to extract meaningful data; localization- the robot
must determine its position in the environment; cognition- the robot must decide how to act
to achieve its goals; and motion control- the robot must modulate its motor outputs to
achieve the desired trajectory.

Of these four components, localization has received the greatest research attention in the
past decade and, as a result, significant advances have been made on this front. In this chap-
ter, we will explore the successful localization methodologies of recent years. First, Section
5.2 describes how sensor and effector uncertainty is responsible for the difficulties of local-
ization. Then, Section 5.3 describes two extreme approaches to dealing with the challenge
of robot localization: avoiding localization altogether, and performing explicit map-based
localization. The remainder of the chapter discusses the question of representation, then pre-
sents case studies of successful localization systems using a variety of representations and
techniques to achieve mobile robot localization competence.

Fig 5.1 Where am I?
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Fig 5.2 General schematic for mobile robot localization.
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5.2 The Challenge of Localization: noise and aliasing

If one could attach an accurate GPS (Global Position System) sensor to a mobile robot, much
of the localization problem would be obviated. The GPS would inform the robot of its exact
position and orientation, indoors and outdoors, so that the answer to the question, "Where
am I?" would always be immediately available. Unfortunately, such a sensor is not currently
practical. The existing GPS network provides accuracy to within several meters, which is
unacceptable for localizing human-scale mobile robots as well as miniature mobile robots
such as desk robots and the body-navigating nano-robots of the future. Furthermore, GPS
technologies cannot function indoors or in obstructed areas and are thus limited in their
workspace.

But, looking beyond the limitations of GPS, localization implies more than knowing one’s
absolute position in the Earth’s reference frame. Consider a robot that is interacting with hu-
mans. This robot may need to identify its absolute position, but its relative position with re-
spect to target humans is equally important. Its localization task can include identifying
humans using its sensor array, then computing its relative position to the humans. Further-
more, during the Cognition step a robot will select a strategy for achieving its goals. If it in-
tends to reach a particular location, then localization may not be enough. The robot may
need to acquire or build an environmental model, a map, that aids it in planning a path to the
goal. Once again, localization means more than simply determining an absolute pose in
space; it means building a map, then identifying the robot’s position relative to that map.

Clearly, the robot’s sensors and effectors play an integral role in all the above forms of lo-
calization. It is because of the inaccuracy and incompleteness of these sensors and effectors
that localization poses difficult challenges. This section identifies important aspects of this
sensor and effector suboptimality.

5.2.1 Sensor Noise

Sensors are the fundamental robot input for the process of perception, and therefore the de-
gree to which sensors can discriminate world state is critical. Sensor noise induces a limi-
tation on the consistency of sensor readings in the same environmental state and, therefore,
on the number of useful bits available from each sensor reading. Often, the source of sensor
noise problems is that some environmental features are not captured by the robot’s represen-
tation and are thus overlooked.

For example, a vision system used for indoor navigation in an office building may use the
color values detected by its color CCD camera. When the sun is hidden by clouds, the illu-
mination of the building’s interior changes due to windows throughout the building. As a
result, hue values are not constant. The color CCD appears noisy from the robot’s perspec-
tive as if subject to random error, and the hue values obtained from the CCD camera will be
unusable, unless the robot is able to note the position of the Sun and clouds in its represen-
tation.

Illumination dependency is only one example of the apparent noise in a vision-based sensor
system. Picture jitter, signal gain, blooming and blurring are all additional sources of noise,
potentially reducing the useful content of a color video image.
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Consider the noise level (i.e. apparent random error) of ultrasonic range-measuring sensors
(e.g. sonars) as we discussed in Section 4.1.2.3. When a sonar transducer emits sound to-
wards a relatively smooth and angled surface, much of the signal will coherently reflect
away, failing to generate a return echo. Depending on the material characteristics, a small
amount of energy may return nonetheless. When this level is close to the gain threshold of
the sonar sensor, then the sonar will, at times, succeed and, at other times, fail to detect the
object. From the robot’s perspective, a virtually unchanged environmental state will result
in two different possible sonar readings: one short, and one long.

The poor signal to noise ratio of a sonar sensor is further confounded by interference be-
tween multiple sonar emitters. Often, research robots have between 12 to 48 sonars on a sin-
gle platform. In acoustically reflective environments, multipath interference is possible
between the sonar emissions of one tranducer and the echo detection circuitry of another
transducer. The result can be dramatically large errors (i.e. underestimation) in ranging val-
ues due to a set of coincidental angles. Such errors occur rarely, less than 1% of the time,
and are virtually random from the robot’s perspective.

In conclusion, sensor noise reduces the useful information content of sensor readings. Clear-
ly, the solution is to take multiple readings into account, employing temporal fusion or
multi-sensor fusion to increase the overall information content of the robot’s inputs.

5.2.2 Sensor Aliasing

A second shortcoming of mobile robot sensors causes them to yield little information con-
tent, further exacerbating the problem of perception and, thus, localization. The problem,
known as sensor aliasing, is a phenomenon that humans rarely encounter. The human sen-
sory system, particularly the visual system, tends to receive unique inputs in each unique lo-
cal state. In other words, every different place looks different. The power of this unique
mapping is only apparent when one considers situations where this fails to hold. Consider
moving through an unfamiliar building that is completely dark. When the visual system sees
only black, one’s localization system quickly degrades. Another useful example is that of a
human-sized maze made from tall hedges. Such mazes have been created for centuries, and
humans find them extremely difficult to solve without landmarks or clues because, without
visual uniqueness, human localization competence degrades rapidly.

In robots, the non-uniqueness of sensors readings, or sensor aliasing, is the norm and not the
exception. Consider a narrow-beam rangefinder such as ultrasonic or infrared rangefinders.
This sensor provides range information in a single direction without any additional data re-
garding material composition such as color, texture and hardness. Even for a robot with sev-
eral such sensors in an array, there are a variety of environmental states that would trigger
the same sensor values across the array. Formally, there is a many-to-one mapping from en-
vironmental states to the robot’s perceptual inputs. Thus, the robot’s percepts cannot distin-
guish from among these many states. A classical problem with sonar-based robots involves
distinguishing between humans and inanimate objects in an indoor setting. When facing an
apparent obstacle in front of itself, should the robot say "Excuse me" because the obstacle
may be a moving human, or should the robot plan a path around the object because it may
be a cardboard box? With sonar alone, these states are aliased and differentiation is impos-
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sible.

The problem posed to navigation because of sensor aliasing is that, even with noise-free sen-
sors, the amount of information is generally insufficient to identify the robot’s position from
a single percept reading. Thus techniques must be employed by the robot programmer that
base the robot’s localization on a series of readings and, thus, sufficient information to re-
cover the robot’s position over time.

5.2.3 Effector Noise

The challenges of localization do not lie with sensor technologies alone. Just as robot sen-
sors are noisy, limiting the information content of the signal, so robot effectors are also
noisy. In particular, a single action taken by a mobile robot may have several different pos-
sible results, even though from the robot’s point of view the initial state before the action
was taken is well-known.

In short, mobile robot effectors introduce uncertainty about future state. Therefore the sim-
ple act of moving tends to increase the uncertainty of a mobile robot. There are, of course,
exceptions. Using cognition, the motion can be carefully planned so as to minimize this ef-
fect, and indeed sometimes to actually result in more certainty. Furthermore, when the robot
actions are taken in concert with careful interpretation of sensory feedback, it can compen-
sate for the uncertainty introduced by noisy actions using the information provided by the
sensors.

First, however, it is important to understand the precise nature of the effector noise that im-
pacts mobile robots. It is important to note that, from the robot’s point of view, this error in
motion is viewed as error in odometry, or the robot’s inability to estimate its own position
over time using knowledge of its kinematics and dynamics. The true source of error gener-
ally lies in an incomplete model of the environment. For instance, the robot does not model
the fact that the floor may be sloped, the wheels may slip, and a human may push the robot.
All of these un-modeled sources of error result in inaccuracy between the physical motion
of the robot, the intended motion of the robot and the proprioceptive sensor estimates of mo-
tion.

In odometry (wheel sensors only) and dead reckoning (also heading sensors) the position up-
date is based on proprioceptive sensors. The movement of the robot, sensed with wheel en-
coders and /or heading sensors is integrated to compute position. Because the sensor
measurement errors are integrated, the position error accumulates over time. Thus the posi-
tion has to be updated from time to time by other localization mechanisms. Otherwise the
robot is not able to maintain a meaningful position estimate in long run.

In the following we will concentrate on odometry based on the wheel sensor readings of a
differential drive robot only (see also [3, 40, 41]). Using additional heading sensors (e.g. gy-
roscope) can help to reduce the cumulative errors, but the main problems remain the same.

There are many sources of odometric error, from environmental factors to resolution:

• Limited resolution during integration (time increments, measurement resolution,
etc.)

• Misalignment of the wheels (deterministic)
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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• Unequal wheel diameter (deterministic)

• Variation in the contact point of the wheel

• Unequal floor contact (slipping, non-planar surface, etc.)

Some of the errors might be deterministic (systematic), thus they can be eliminated by prop-
er calibration of the system. However, there are still a number of non-deterministic (ran-
dom) errors which remain, leading to uncertainties in position estimation over time. From a
geometric point of view one can classify the errors into three types:

• Range error: integrated path length (distance) of the robots movement
-> sum of the wheel movements

• Turn error: similar to range error, but for turns
-> difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribute to the overall position error is nonlinear. Consider a robot, whose position is initially
perfectly well-known, moving forward in a straight line along the x axis. The error in the y-

position introduced by a move of d meters will have a component of , which can be

quite large as the angular error ∆θ grows. Over time, as a mobile robot moves about the en-
vironment, the rotational error between its internal reference frame and its original reference
frame grows quickly. As the robot moves away from the origin of these reference frames,
the resulting linear error in position grows quite large. It is instructive to establish an error
model for odometric accuracy and see how the errors propagate over time.

5.2.4 An Error Model for Odometric Position Estimation

Generally the pose (position) of a robot is represented by the vector

. (5.1)

For a differential drive robot the position can be estimated starting from a known position

d ∆θsin

Fig 5.3 Movement of a differential drive robot
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by integrating the movement (summing the incremental travel distances). For a discrete sys-

tem with a fixed sampling interval ∆t the incremental travel distances are:

(5.2)

(5.3)

(5.4)

(5.5)

where:

: Path traveled in the last sampling interval

: Traveled distances for right and left wheel respectively

: Distance between the two wheels of differential drive robot

Thus we get the updated position p’:

(5.6)

By using the relation for of equations (5.4) and (5.5) we further obtain the basic

equation for odometric position update (for differential drive robots):

(5.7)

As we discussed earlier, odometric position updates can give only a very rough estimate of
the actual position. Due to integration errors of the uncertainties of p and the motion errors

during the incremental motion the position error based on odometry integration

grows with time.

In the next step we will establish an error model for the integrated position p’ to obtain the
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starting point the initial covariance matrix is known. For the motion increment

we assume the following covariance matrix :

(5.8)

where and are the distances travelled by each wheel, and , are error constants

representing the non-deterministic parameters of the motor drive and the wheel-floor inter-
action. As you can see in equation (5.8) we made the following assumption:

• The two errors of the individually driven wheels are independent1

• The errors are proportional to the absolute value of the traveled distances .

These assumptions, while not perfect, are suitable and will thus be used for the further de-
velopment of the error model. The motion errors are due to unprecise movement because of
deformation of wheel, slippage, unequal floor, errors in encoders, et cetera. The values for

the error constants and depend on the robot and the environment and should be exper-

imentally established by performing and analyzing representative movements.

If we assume that p and are uncorrelated and the derivation of f (equ. (5.7))

is reasonably approximated by the first order Taylor expansion (linearization) we conclude,
using the error propagation law (see section 4.2.3):

(5.9)

The covariance matrix is, of course, always given by the of the previous step, and

can thus be calculated after specifying an initial value (e.g. 0).

Using equation (5.7) we can develop the two Jacobians and :

(5.10)

1. If there is more knowledge regarding the actual robot kinematics, the correlation terms of the covariance matrix
could also be used.
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(5.11)

The details for arriving at equation (5.11) are:

(5.12)

(5.13)

and with

; (5.14)

; ; ; (5.15)

we obtain equation (5.11).

Figures 5.4 and 5.5 show typical examples of how the position errors grow with time. The
results have been computed using the error model presented above.

Once the error model has been established, the error parameters must be specified. One can
compensate for deterministic errors properly calibrating the robot. However the error pa-
rameters specifying the non-deterministic errors can only be quantified by statistical (repet-
itive) measurements. A detailed discussion of odometric errors and a method for calibration
and quantification of deterministic and non-deterministic errors can be found in [4].
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Fig 5.4 Growth of the pose uncertainty for straight line movement: Note that the un-
certainty in y grows much faster than in the direction of movement. This re-
sults from the integration of the uncertainty about the robot’s orientation.
The ellipses drawn around the robot positions represent the uncertainties in
the x,y direction (e.g. ). The uncertainty of the orientation is not rep-
resented in the picture although its effect can be indirectly observed.
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Fig 5.5 Growth of the pose uncertainty for circular movement (r=const): Again, the
uncertainty perpendicular to the movement grows much faster than that in
the direction of movement. Note that the main axis of the uncertainty ellipsis
does not remain perpendicular to the direction of movement.
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5.3 To Localize or Not to Localize: localization-based nav-

igation versus programmed solutions

Figure 5.6 depicts a standard indoor environment that a mobile robot navigates. Suppose
that the mobile robot in question must deliver messages between two specific rooms in this
environment: rooms A and B. In creating a navigation system, it is clear that the mobile ro-
bot will need sensors and a motion control system. Sensors are absolutely required to avoid
hitting moving obstacles such as humans, and some motion control system is required so that
the robot can deliberately move.

It is less evident, however, whether or not this mobile robot will require a localization sys-
tem. Localization may seem mandatory in order to successfully navigate between the two
rooms. It is through localizing on a map, after all, that the robot can hope to recover its po-
sition and detect when it has arrived at the goal location. It is true that, at the least, the robot
must have a way of detecting the goal location. However, explicit localization with refer-
ence to a map is not the only strategy that qualifies as a goal detector.

An alternative, espoused by the behavior-based community, suggests that, since sensors and
effectors are noisy and information-limited, one should avoid creating a geometric map for
localization. Instead, this community suggests designing sets of behaviors that together re-
sult in the desired robot motion. Fundamentally, this approach avoids explicit reasoning
about localization and position, and thus generally avoids explicit path planning as well.

This technique is based on a belief that there exists a procedural solution to the particular
navigation problem at hand. For example, in Fig. 5.6, the behavioralist approach to navigat-
ing from Room A to Room B might be to design a left-wall-following behavior and a detec-
tor for Room B that is triggered by some unique queue in Room B, such as the color of the
carpet. Then, the robot can reach Room B by engaging the left wall follower with the Room
B detector as the termination condition for the program.

The architecture of this solution to a specific navigation problem is shown in figure 5.7. The
key advantage of this method is that, when possible, it may be implemented very quickly for
a single environment with a small number of goal positions. It suffers from some disadvan-

Fig 5.6 A Sample Environment

A

B
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tages, however. First, the method does not directly scale to other environments or to larger
environments. Often, the navigation code is location-specific, and the same degree of cod-
ing and debugging is required to move the robot to a new environment.

Second, the underlying procedures, such as left-wall-follow, must be carefully designed to
produce the desired behavior. This task may be time-consuming and is heavily dependent
on the specific robot hardware and environmental characteristics.

Third, a behavior-based system may have multiple active behaviors at any one time. Even
when individual behaviors are tuned to optimize performance, this fusion and rapid switch-
ing between multiple behaviors can negate that fine-tuning. Often, the addition of each new
incremental behavior forces the robot designer to re-tune all of the existing behaviors again
to ensure that the new interactions with the freshly introduced behavior are all stable.

In contrast to the behavior-based approach, the map-based approach includes both localiza-
tion and cognition modules (see Fig. 5.8). In map-based navigation, the robot explicitly at-
tempts to localize by collecting sensor data, then updating some belief about its position with
respect to a map of the environment. The key advantages of the map-based approach for
navigation are as follows:

• The explicit, map-based concept of position makes the system’s belief about position
transparently available to the human operators.

• The existence of the map itself represents a medium for communication between hu-
man and robot: the human can simply give the robot a new map if the robot goes to

Fig 5.7 An Architecture for Behavior-based Navigation
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a new environment.

• The map, if created by the robot, can be used by humans as well, achieving two uses.

The map-based approach will require more up-front development effort to create a navigat-
ing mobile robot. The hope is that the development effort results in an architecture that can
successfully map and navigate a variety of environments, thereby amortizing the up-front
design cost over time.

Of course the key risk of the map-based approach is that an internal representation, rather
than the real world itself, is being constructed and trusted by the robot. If that model diverg-
es from reality (i.e. if the map is wrong), then the robot’s behavior may be undesirable, even
if the raw sensor values of the robot are only transiently incorrect.

In the remainder of this chapter, we focus on a discussion of map-based approaches and, spe-
cifically, the localization component of these techniques. These approaches are particularly
appropriate for study given their significant recent successes in enabling mobile robots to
navigate a variety of environments, from academic research buildings to factory floors and
museums around the world.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU



172 Autonomous Mobile Robots
5.4 Belief Representation

The fundamental issue that differentiates various map-based localization systems is the issue
of representation. There are two specific concepts that the robot must represent, and each
has its own unique possible solutions. The robot must have a representation (a model) of
the environment, or a map. What aspects of the environment are contained in this map? At
what level of fidelity does the map represent the environment? These are the design ques-
tions for map representation.

The robot must also have a representation of its belief regarding its position on the map.
Does the robot identify a single unique position as its current position, or does it describe its
position in terms of a set of possible positions? If multiple possible positions are expressed
in a single belief, how are those multiple positions ranked, if at all? These are the design
questions for belief representation.

Decisions along these two design axes can result in varying levels of architectural complex-
ity, computational complexity and overall localization accuracy. We begin by discussing
belief representation. The first major branch in a taxonomy of belief representation systems
differentiates between single hypothesis and multiple hypothesis belief systems. The former
covers solutions in which the robot postulates its unique position, whereas the latter enables
a mobile robot to describe the degree to which it is uncertain about its position. A sampling
of different belief and map representations is shown in figure 5.9.

5.4.1 Single Hypothesis Belief

The single hypothesis belief representation is the most direct possible postulation of mobile
robot position. Given some environmental map, the robot’s belief about position is ex-
pressed as a single unique point on the map. In Fig. 5.10, three examples of a single hypoth-
esis belief are shown using three different map representations of the same actual
environment (fig. 5.10a). In 5.10b, a single point is geometrically annotated as the robot’s
position in a continuous two-dimensional geometric map. In 5.10c, the map is a discrete,
tessellated map, and the position is noted at the same level of fidelity as the map cell size.
In 5.10d, the map is not geometrical at all but abstract and topological. In this case, the sin-
gle hypothesis of position involves identifying a single node i in the topological graph as the
robot’s position.

The principal advantage of the single hypothesis representation of position stems from the
fact that, given a unique belief, there is no position ambiguity. The unambiguous nature of
this representation facilitates decision-making at the robot’s cognitive level (e.g. path plan-
ning). The robot can simply assume that its belief is correct, and can then select its future
actions based on its unique position.

Just as decision-making is facilitated by a single-position hypothesis, so updating the robot’s
belief regarding position is also facilitated, since the single position must be updated by def-
inition to a new, single position. The challenge with this position update approach, which
ultimately is the principal disadvantage of single-hypothesis representation, is that robot
motion often induces uncertainty due to effectory and sensory noise. Therefore, forcing the
position update process to always generate a single hypothesis of position is challenging
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and, often, impossible.

5.4.2 Multiple Hypothesis Belief

In the case of multiple hypothesis beliefs regarding position, the robot tracks not just a single
possible position but a possibly infinite set of positions.

In one simple example originating in the work of Jean-Claude Latombe [5, 89], the robot’s
position is described in terms of a convex polygon positioned in a two-dimensional map of
the environment. This multiple hypothesis representation communicates the set of possible
robot positions geometrically, with no preference ordering over the positions. Each point in

Fig 5.9 Belief representation regarding the robot position (1 dimensional) in con-
tinuous and discretized (tessellated) maps.
a)Continuous map with multiple hypothesis belief, e.g. single Gaussian cen-
tered at a single continuous value
b)Continuous map with multiple hypothesis belief, e.g. multiple Gaussians
centered at multiple continuous values
c)Discretized (decomposed) grid map with probability values for all possi-
ble robot position, e.g. Markov approach
d)Discretized topological map with probability value for all possible nodes
(topological robot positions), e.g. Markov approach
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the map is simply either contained by the polygon and, therefore, in the robot’s belief set, or
outside the polygon and thereby excluded. Mathematically, the position polygon serves to
partition the space of possible robot positions. Such a polygonal representation of the mul-
tiple hypothesis belief can apply to a continuous, geometric map of the environment or, al-
ternatively, to a tessellated, discrete approximation to the continuous environment.

It may be useful, however, to incorporate some ordering on the possible robot positions, cap-
turing the fact that some robot positions are likelier than others. A strategy for representing
a continuous multiple hypothesis belief state along with a preference ordering over possible
positions is to model the belief as a mathematical distribution. For example, [42,47] notate
the robot’s position belief using an {X,Y} point in the two-dimensional environment as the

mean plus a standard deviation parameter , thereby defining a Gaussian distribution.

The intended interpretation is that the distribution at each position represents the probability

Fig 5.10 Three examples of single hypotheses of position using different map repre-
sentation.
a) real map with walls, doors and furniture
b) line-based map

-> around 100 lines with two parameters
c) occupancy grid based map

-> around 3000 gird cells sizing 50x50 cm
d) topological map using line features (Z/S-lines) and doors

-> around 50 features and 18 nodes
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assigned to the robot being at that location. This representation is particularly amenable to
mathematically defined tracking functions, such as the Kalman Filter, that are designed to
operate efficiently on Gaussian distributions.

An alternative is to represent the set of possible robot positions, not using a single Gaussian
probability density function, but using discrete markers for each possible position. In this
case, each possible robot position is individually noted along with a confidence or probabil-
ity parameter (See Fig. (5.11)). In the case of a highly tessellated map this can result in thou-
sands or even tens of thousands of possible robot positions in a single belief state.

The key advantage of the multiple hypothesis representation is that the robot can explicitly
maintain uncertainty regarding its position. If the robot only acquires partial information re-
garding position from its sensors and effectors, that information can conceptually be incor-
porated in an updated belief.

A more subtle advantage of this approach revolves around the robot’s ability to explicitly
measure its own degree of uncertainty regarding position. This advantage is the key to a
class of localization and navigation solutions in which the robot not only reasons about
reaching a particular goal, but reasons about the future trajectory of its own belief state. For
instance, a robot may choose paths that minimize its future position uncertainty. An exam-
ple of this approach is [90], in which the robot plans a path from point A to B that takes it
near a series of landmarks in order to mitigate localization difficulties. This type of explicit
reasoning about the effect that trajectories will have on the quality of localization requires a
multiple hypothesis representation.

One of the fundamental disadvantages of the multiple hypothesis approaches involves deci-
sion-making. If the robot represents its position as a region or set of possible positions, then
how shall it decide what to do next? Figure 5.11 provides an example. At position 3, the
robot’s belief state is distributed among 5 hallways separately. If the goal of the robot is to
travel down one particular hallway, then given this belief state what action should the robot
choose?

The challenge occurs because some of the robot’s possible positions imply a motion trajec-

Fig 5.11 Example of multiple hypothesis tracking (courtesy of W. Burgard [43]). The
belief state that is largely distributed becomes very certain after moving to
position 4

Belief states at positions 2, 3 and 4Path of the robot
R. Siegwart, EPFL, Illah Nourbakhsh, CMU



176 Autonomous Mobile Robots
tory that is inconsistent with some of its other possible positions. One approach that we will
see in the case studies below is to assume, for decision-making purposes, that the robot is
physically at the most probable location in its belief state, then to choose a path based on
that current position. But this approach demands that each possible position have an asso-
ciated probability.

In general, the right approach to such a decision-making problems would be to decide on
trajectories that eliminate the ambiguity explicitly. But this leads us to the second major dis-
advantage of the multiple hypothesis approaches. In the most general case, they can be com-
putationally very expensive. When one reasons in a three dimensional space of discrete
possible positions, the number of possible belief states in the single hypothesis case is lim-
ited to the number of possible positions in the 3D world. Consider this number to be N.
When one moves to an arbitrary multiple hypothesis representation, then the number of pos-

sible belief states is the power set of N, which is far larger: . Thus explicit reasoning

about the possible trajectory of the belief state over time quickly becomes computationally
untenable as the size of the environment grows.

There are, however, specific forms of multiple hypothesis representations that are somewhat
more constrained, thereby avoiding the computational explosion while allowing a limited
type of multiple hypothesis belief. For example, if one assumes a Gaussian distribution of
probability centered at a single position, then the problem of representation and tracking of
belief becomes equivalent to Kalman Filtering, a straightforward mathematical process de-
scribed below. Alternatively, a highly tessellated map representation combined with a limit
of 10 possible positions in the belief state, results in a discrete update cycle that is, at worst,
only 10x more computationally expensive than single hypothesis belief update.

In conclusion, the most critical benefit of the multiple hypothesis belief state is the ability to
maintain a sense of position while explicitly annotating the robot’s uncertainty about its own
position. This powerful representation has enabled robots with limited sensory information
to navigate robustly in an array of environments, as we shall see in the case studies below.

2
N
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5.5 Map Representation

The problem of representing the environment in which the robot moves is a dual of the prob-
lem of representing the robot’s possible position or positions. Decisions made regarding the
environmental representation can have impact on the choices available for robot position
representation. Often the fidelity of the position representation is bounded by the fidelity of
the map.

Three fundamental relationships must be understood when choosing a particular map repre-
sentation:

• The precision of the map must appropriately match the precision with which the ro-
bot needs to achieve its goals.

• The precision of the map and the type of features represented must match the preci-
sion and data types returned by the robot’s sensors.

• The complexity of the map representation has direct impact on the computational
complexity of reasoning about mapping, localization and navigation.

In the following sections, we identify and discuss critical design choices in creating a map
representation. Each such choice has great impact on the relationships listed above and on
the resulting robot localization architecture. As we will see, the choice of possible map rep-
resentations is broad. Selecting an appropriate representation requires understanding all of
the trade-offs inherent in that choice as well as understanding the specific context in which
a particular mobile robot implementation must perform localization. In general, the environ-
ment representation and model can be roughly classified as presented in chapter 4.3.

5.5.1 Continuous Representations

A continuous-valued map is one method for exact decomposition of the environment. The
position of environmental features can be annoted precisely in continuous space. Mobile ro-
bot implementations to date use continuous maps only in two dimensional representations,
as further dimensionality can result in computational explosion.

A common approach is to combine the exactness of a continuous representation with the
compactness of the closed world assumption. This means that one assumes that the repre-
sentation will specify all environmental objects in the map, and that any area in the map that
is devoid of objects has no objects in the corresponding portion of the environment. Thus,
the total storage needed in the map is proportional to the density of objects in the environ-
ment, and a sparse environment can be represented by a low-memory map.

One example of such a representation, shown in Figure 5.12, is a 2D representation in which
polygons represent all obstacles in a continuos-valued coordinate space. This is similar to
the method used by Latombe [5, 113] and others to represent environments for mobile robot
path planning techniques.

In the case of [5, 113], most of the experiments are in fact simulations run exclusively within
the computer’s memory. Therefore, no real effort would have been expended to attempt to
use sets of polygons to describe a real-world environment, such as a park or office building.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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In other work in which real environments must be captured by the maps, one sees a trend
toward selectivity and abstraction. The human map-maker tends to capture on the map, for
localization purposes, only objects that can be detected by the robot’s sensors and, further-
more, only a subset of the features of real-world objects.

It should be immediately apparent that geometric maps can capably represent the physical
locations of objects without referring to their texture, color, elasticity, or any other such sec-
ondary features that do not related directly to position and space. In addition to this level of
simplification, a mobile robot map can further reduce memory usage by capturing only as-
pects of object geometry that are immediately relevant to localization. For example all ob-
jects may be approximated using very simple convex polygons, sacrificing map felicity for
the sake of computational speed.

One excellent example involves line extraction. Many indoor mobile robots rely upon laser
rangefinding devices to recover distance readings to nearby objects. Such robots can auto-
matically extract best-fit lines from the dense range data provided by thousands of points of
laser strikes. Given such a line extraction sensor, an appropriate continuous mapping ap-
proach is to populate the map with a set of infinite lines. The continuous nature of the map
guarantees that lines can be positioned at arbitrary positions in the plane and at arbitrary an-
gles. The abstraction of real environmental objects such as walls and intersections captures
only the information in the map representation that matches the type of information recov-
ered by the mobile robot’s rangefinding sensor.

Figure 5.13 shows a map of an indoor environment at EPFL using a continuous line repre-

Fig 5.12 A continous representation using polygons as environmental obstacles
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sentation. Note that the only environmental features captured by the map are straight lines,
such as those found at corners and along walls. This represents not only a sampling of the
real world of richer features, but also a simplification, for an actual wall may have texture
and relief that is not captured by the mapped line.

The impact of continuos map representations on position representation is primarily posi-
tive. In the case of single hypothesis position representation, that position may be specified
as any continuous-valued point in the coordinate space, and therefore extremely high accu-
racy is possible. In the case of multiple hypothesis position representation, the continuous
map enables two types of multiple position representation.

In one case, the possible robot position may be depicted as a geometric shape in the hyper-
plane, such that the robot is known to be within the bounds of that shape. This is shown in
Figure 5.30, in which the position of the robot is depicted by an oval bounding area.

Yet, the continuous representation does not disallow representation of position in the form
of a discrete set of possible positions. For instance, in [111] the robot position belief state
is captured by sampling nine continuous-valued positions from within a region near the ro-
bot’s best known position. This algorithm captures, within a continuous space, a discrete
sampling of possible robot positions.

In summary, the key advantage of a continuous map representation is the potential for high
accuracy and expressiveness with respect to the environmental configuration as well as the
robot position within that environment. The danger of a continuous representation is that
the map may be computationally costly. But this danger can be tempered by employing ab-
straction and capturing only the most relevant environmental features. Together with the
use of the closed world assumption, these techniques can enable a continuous-valued map
to be no more costly, and sometimes even less costly, than a standard discrete representation.

5.5.2 Decomposition Strategies

In the section above, we discussed one method of simplification, in which the continuous
map representation contains a set of infinite lines that approximate real-world environmental
lines based on a two-dimensional slice of the world. Basically this transformation from the
real world to the map representation is a filter that removes all non-straight data and further-
more extends line segment data into infinite lines that require fewer parameters.

Fig 5.13 Example of a continuous-valued line representation of EPFL.
left: real map
right: representation with a set of infinite lines
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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A more dramatic form of simplification is abstraction: a general decomposition and selec-
tion of environmental features. In this section, we explore decomposition as applied in its
more extreme forms to the question of map representation.

Why would one radically decompose the real environment during the design of a map rep-
resentation? The immediate disadvantage of decomposition and abstraction is the loss of
fidelity between the map and the real world. Both qualitatively, in terms of overall structure,
and quantitatively, in terms of geometric precision, a highly abstract map does not compare
favorably to a high-fidelity map.

Despite this disadvantage, decomposition and abstraction may be useful if the abstraction
can be planned carefully so as to capture the relevant, useful features of the world while dis-
carding all other features. The advantage of this approach is that the map representation can
potentially be minimized. Furthermore, if the decomposition is hierarchical, such as in a
pyramid of recursive abstraction, then reasoning and planning with respect to the map rep-
resentation may be computationally far superior to planning in a fully detailed world model.

A standard, lossless form of opportunistic decomposition is termed exact cell decomposi-
tion. This method, introduced by [5], achieves decomposition by selecting boundaries be-
tween discrete cells based on geometric criticality.

Figure 5.14 depicts an exact decomposition of a planar workspace populated by polygonal
obstacles. The map representation tessellates the space into areas of free space. The repre-
sentation can be extremely compact because each such area is actually stored as a single
node, shown in the graph at the bottom of Figure 5.14.

The underlying assumption behind this decomposition is that the particular position of a ro-

Fig 5.14 Example of exact cell
decomposition.
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bot within each area of free space does not matter. What matters is the robot’s ability to
traverse from each area of free space to the adjacent areas. Therefore, as with other repre-
sentations we will see, the resulting graph captures the adjacency of map locales. If indeed
the assumptions are valid and the robot does not care about its precise position within a sin-
gle area, then this can be an effective representation that nonetheless captures the connec-
tivity of the environment.

Such an exact decomposition is not always appropriate. Exact decomposition is a function
of the particular environment obstacles and free space. If this information is expensive to
collect or even unknown, then such an approach is not feasible.

An alternative is fixed decomposition, in which the world is tessellated, transforming the
continuos real environment into a discrete approximation for the map. Such a transforma-
tion is demonstrated in Figure 5.15, which depicts what happens to obstacle-filled and free
areas during this transformation. The key disadvantage of this approach stems from its in-
exact nature. It is possible for narrow passageways to be lost during such a transformation,
as shown in Figure 5.15. Formally this means that fixed decomposition is sound but not
complete. Yet another approach is adaptive cell decomposition as presented in Figure 5.16.

The concept of fixed decomposition is extremely popular in mobile robotics; it is perhaps
the single most common map representation technique currently utilized. One very popular

Fig 5.15 Fixed decomposition of the same space. (narrow passage disappears)
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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version of fixed decomposition is known as the occupancy grid representation [91]. In an
occupancy grid, the environment is represented by a discrete grid, where each cell is either
filled (part of an obstacle) or empty (part of free space). This method is of particular value
when a robot is equipped with range-based sensors because the range values of each sensor,
combined with the absolute position of the robot, can be used directly to update the filled/
empty value of each cell.

In the occupancy grid, each cell may have a counter, whereby the value 0 indicates that the
cell has not been "hit" by any ranging measurements and, therefore, it is likely free space.
As the number of ranging strikes increases, the cell’s value is incremented and, above a cer-
tain threshold, the cell is deemed to be an obstacle. By discounting the values of cells over
time, both hysteresis and the possibility of transient obstacles can be represented using this
occupancy grid approach. Figure 5.17 depicts an occupancy grid representation in which
the darkness of each cell is proportional to the value of its counter. One commercial robot
that uses a standard occupancy grid for mapping and navigation is the Cye robot [112].

Fig 5.16 Example of adaptive decomposition of an environment.

Fig 5.17 Example of an occupancy grid map representation.
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There remain two main disadvantages of the occupancy grid approach. First, the size of the
map in robot memory grows with the size of the environment and, if a small cell size is used,
this size can quickly become untenable. This occupancy grid approach is not compatible
with the closed world assumption, which enabled continuous representations to have poten-
tially very small memory requirements in large, sparse environments. In contrast, the occu-
pancy grid must have memory set aside for every cell in the matrix. Furthermore, any fixed
decomposition method such as this imposes a geometric grid on the world a priori, regard-
less of the environmental details. This can be inappropriate in cases where geometry is not
the most salient feature of the environment.

For these reasons, an alternative, called topological decomposition, has been the subject of
some exploration in mobile robotics. Topological approaches avoid direct measurement of
geometric environmental qualities, instead concentrating on characteristics of the environ-
ment that are most relevant to the robot for localization.

Formally, a topological representation is a graph that specifies two things: nodes and the
connectivity between those nodes. Insofar as a topological representation is intended for the
use of a mobile robot, nodes are used to denote areas in the world and arcs are used to denote
adjacency of pairs of nodes. When an arc connects two nodes, then the robot can traverse
from one node to the other without requiring traversal of any other intermediary node.

Adjacency is clearly at the heart of the topological approach, just as adjacency in a cell de-
composition representation maps to geometric adjacency in the real world. However, the
topological approach diverges in that the nodes are not of fixed size nor even specifications
of free space. Instead, nodes document an area based on any sensor discriminant such that
the robot can recognize entry and exit of the node.

Figure 5.18 depicts a topological representation of a set of hallways and offices in an indoor

Fig 5.18 A topological representation of an indoor office area.
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environment. In this case, the robot is assumed to have an intersection detector, perhaps us-
ing sonar and vision to find intersections between halls and between halls and rooms. Note
that nodes capture geometric space and arcs in this representation simply represent connec-
tivity.

Another example of topological representation is the work of Dudek [49], in which the goal
is to create a mobile robot that can capture the most interesting aspects of an area for human
consumption. The nodes in Dudek’s representation are visually striking locales rather than
route intersections.

In order to navigate using a topological map robustly, a robot must satisfy two constraints.
First, it must have a means for detecting its current position in terms of the nodes of the to-
pological graph. Second, it must have a means for traveling between nodes using robot mo-
tion. The node sizes and particular dimensions must be optimized to match the sensory
discrimination of the mobile robot hardware. This ability to "tune" the representation to the
robot’s particular sensors can be an important advantage of the topological approach. How-
ever, as the map representation drifts further away from true geometry, the expressiveness
of the representation for accurately and precisely describing a robot position is lost. Therein
lies the compromise between the discrete cell-based map representations and the topological
representations. Interestingly, the continuous map representation has the potential to be
both compact like a topological representation and precise as with all direct geometric rep-
resentations.

Yet, a chief motivation of the topological approach is that the environment may contain im-
portant non-geometric features - features that have no ranging relevance but are useful for
localization. In Chapter 4 we described such whole-image vision-based features.

In contrast to these whole-image feature extractors, often spatially localized landmarks are
artificially placed in an environment to impose a particular visual-topological connectivity
upon the environment. In effect, the artificial landmark can impose artificial structure. Ex-
amples of working systems operating with this landmark-based strategy have also demon-
strated success. Latombe’s landmark-based navigation research [89] has been implemented
on real-world indoor mobile robots that employ paper landmarks attached to the ceiling as
the locally observable features. Chips the museum robot is another robot that uses man-
made landmarks to obviate the localization problem. In this case, a bright pink square serves
as a landmark with dimensions and color signature that would be hard to accidentally repro-
duce in a museum environment [88]. One such museum landmark is shown in Figure (5.19).

In summary, range is clearly not the only measurable and useful environmental value for a
mobile robot. This is particularly true due to the advent of color vision as well as laser
rangefinding, which provides reflectance information in addition to range information.
Choosing a map representation for a particular mobile robot requires first understanding the
sensors available on the mobile robot and second understanding the mobile robot’s function-
al requirements (e.g. required goal precision and accuracy).

5.5.3 State of the Art: Current Challenges in Map Representation

The sections above describe major design decisions in regards to map representation choic-
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es. There are, however, fundamental real-world features that mobile robot map representa-
tions do not yet represent well. These continue to be the subject of open research, and
several such challenges are described below.

The real world is dynamic. As mobile robots come to inhabit the same spaces as humans,
they will encounter moving people, cars, strollers and the transient obstacles placed and
moved by humans as they go about their activities. This is particularly true when one con-
siders the home environment with which domestic robots will someday need to contend.

The map representations described above do not, in general, have explicit facilities for iden-
tifying and distinguishing between permanent obstacles (e.g. walls, doorways, etc.) and
transient obstacles (e.g. humans, shipping packages, etc.). The current state of the art in
terms of mobile robot sensors is partly to blame for this shortcoming. Although vision re-
search is rapidly advancing, robust sensors that discriminate between moving animals and
static structures from a moving reference frame are not yet available. Furthermore, estimat-
ing the motion vector of transient objects remains a research problem.

Usually, the assumption behind the above map representations is that all objects on the map
are effectively static. Partial success can be achieved by discounting mapped objects over
time. For example, occupancy grid techniques can be more robust to dynamic settings by
introducing temporal discounting, effectively treating transient obstacles as noise. The more
challenging process of map creation is particularly fragile to environment dynamics; most
mapping techniques generally require that the environment be free of moving objects during
the mapping process. One exception to this limitation involves topological representations.
Because precise geometry is not important, transient objects have little effect on the map-
ping or localization process, subject to the critical constraint that the transient objects must
not change the topological connectivity of the environment. Still, neither the occupancy grid
representation nor a topological approach is actively recognizing and representing transient

Fig 5.19 An artificial landmark used by Chips during autonomous docking.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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objects as distinct from both sensor error and permanent map features.

As vision sensing provides more robust and more informative content regarding the tran-
sience and motion details of objects in the world, mobile roboticists will in time propose rep-
resentations that make use of that information. A classic example involves occlusion by
human crowds. Museum tour guide robots generally suffer from an extreme amount of oc-
clusion. If the robot’s sensing suite is located along the robot’s body, then the robot is ef-
fectively blind when a group of human visitors completely surrounds the robot. This is
because its map contains only environment features that are, at that point, fully hidden from
the robot’s sensors by the wall of people. In the best case, the robot should recognize its
occlusion and make no effort to localize using these invalid sensor readings. In the worst
case, the robot will localize with the fully occluded data, and will update its location incor-
rectly. A vision sensor that can discriminate the local conditions of the robot (e.g. we are
surrounded by people) can help eliminate this error mode.

A second open challenge in mobile robot localization involves the traversal of open spaces.
Existing localization techniques generally depend on local measures such as range, thereby
demanding environments that are somewhat densely filled with objects that the sensors can
detect and measure. Wide open spaces such as parking lots, fields of grass and indoor atri-
ums such as those found in convention centers pose a difficulty for such systems due to their
relative sparseness. Indeed, when populated with humans, the challenge is exacerbated be-
cause any mapped objects are almost certain to be occluded from view by the people.

Once again, more recent technologies provide some hope for overcoming these limitations.
Both vision and state-of-the-art laser rangefinding devices offer outdoor performance with
ranges of up to a hundred meters and more. Of course, GPS performs even better. Such
long-range sensing may be required for robots to localize using distant features.

This trend teases out a hidden assumption underlying most topological map representations.
Usually, topological representations make assumptions regarding spatial locality: a node
contains objects and features that are themselves within that node. The process of map cre-
ation thus involves making nodes that are, in their own self-contained way, recognizable by
virtue of the objects contained within the node. Therefore, in an indoor environment, each
room can be a separate node, and this is reasonable because each room will have a layout
and a set of belongings that are unique to that room.

However, consider the outdoor world of a wide-open park. Where should a single node end
and the next node begin? The answer is unclear because objects that are far away from the
current node, or position, can yield information for the localization process. For example,
the hump of a hill at the horizon, the position of a river in the valley and the trajectory of the
sun all are non-local features that have great bearing on one’s ability to infer current posi-
tion. The spatial locality assumption is violated and, instead, replaced by a visibility crite-
rion: the node or cell may need a mechanism for representing objects that are measurable
and visible from that cell. Once again, as sensors improve and, in this case, as outdoor lo-
comotion mechanisms improve, there will be greater urgency to solve problems associated
with localization in wide-open settings, with and without GPS-type global localization sen-
sors.



5 Mobile Robot Localization 187
We end this section with one final open challenge that represents one of the fundamental ac-
ademic research questions of robotics: sensor fusion. A variety of measurement types are
possible using off-the-shelf robot sensors, including heat, range, acoustic and light-based re-
flectivity, color, texture, friction, etc. Sensor fusion is a research topic closely related to map
representation. Just as a map must embody an environment in sufficient detail for a robot
to perform localization and reasoning, sensor fusion demands a representation of the world
that is sufficiently general and expressive that a variety of sensor types can have their data
correlated appropriately, strengthening the resulting percepts well beyond that of any indi-
vidual sensor’s readings.

Perhaps the only general implementation of sensor fusion to date is that of neural network
classifier. Using this technique, any number and any type of sensor values may be jointly
combined in a network that will use whatever means necessary to optimize its classification
accuracy. For the mobile robot that must use a human-readable internal map representation,
no equally general sensor fusion scheme has yet been born. It is reasonable to expect that,
when the sensor fusion problem is solved, integration of a large number of disparate sensor
types may easily result in sufficient discriminatory power for robots to achieve real-world
navigation, even in wide-open and dynamic circumstances such as a public square filled
with people.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.6 Probabilistic Map-Based Localization

5.6.1 Introduction

As stated earlier, multiple hypothesis position representation is advantageous because the
robot can explicitly track its own beliefs regarding its possible positions in the environment.
Ideally, the robot’s belief state will change, over time, as is consistent with its motor outputs
and perceptual inputs. One geometric approach to multiple hypothesis representation, men-
tioned earlier, involves identifying the possible positions of the robot by specifying a poly-
gon in the environmental representation [113]. This method does not provide any indication
of the relative chances between various possible robot positions.

Probabilistic techniques differ from this because they explicitly identify probabilities with
the possible robot positions, and for this reason these methods have been the focus of recent
research. In the following sections we present two classes of probabilistic localization. The
first class, Markov localization, uses an explicitly specified probability distribution across
all possible robots positions. The second method, Kalman filter localization, uses a Gauss-
ian probability density representation of robot position and scan matching for localization.
Unlike Markov localization, Kalman filter localization does not independently consider
each possible pose in the robot’s configuration space. Interestingly, the Kalman filter local-
ization process results from the Markov localization axioms if the robot’s position uncer-
tainty is assumed to have a Gaussian form [28 page 43-44].

Before discussing each method in detail, we present the general robot localization problem
and solution strategy. Consider a mobile robot moving in a known environment. As it starts
to move, say from a precisely known location, it can keep track of its motion using odome-
try. Due to odometry uncertainty, after some movement the robot will become very uncer-
tain about its position (see section 5.2.4). To keep position uncertainty from growing
unbounded, the robot must localize itself in relation to its environment map. To localize, the
robot might use its on-board sensors (ultrasonic, range sensor, vision) to make observations
of its environment. The information provided by the robot’s odometry, plus the information
provided by such exteroceptive observations can be combined to enable the robot to localize
as well as possible with respect to its map. The processes of updating based on propriocep-
tive sensor values and exteroceptive sensor values are often separated logically, leading to
a general two-step process for robot position update.

Action update represents the application of some action model Act to the mobile robot’s

proprioceptive encoder measurements and prior belief state to yield a new belief

state representing the robot’s belief about its current position. Note that throughout this
chapter we will assume that the robot’s proprioceptive encoder measurements are used as
the best possible measure of its actions over time. If, for instance, a differential drive robot
had motors without encoders connected to its wheels and employed open-loop control, then
instead of encoder measurements the robot’s highly uncertain estimates of wheel spin would
need to be incorporated. We ignore such cases and therefore have a simple formula:

. (5.16)
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Perception update represents the application of some perception model See to the mobile

robot’s exteroceptive sensor inputs and updated belief state to yield a refined belief

state representing the robot’s current position:

(5.17)

The perception model See and sometimes the action model Act are abstract functions of both
the map and the robot’s physical configuration (e.g. sensors and their positions, kinematics,
etc.).

In general, the action update process contributes uncertainty to the robot’s belief about po-
sition: encoders have error and therefore motion is somewhat nondeterministic. By contrast,
perception update generally refines the belief state. Sensor measurements, when compared
to the robot’s environmental model, tend to provide clues regarding the robot’s possible po-
sition.

In the case of Markov localization, the robot’s belief state is usually represented as separate
probability assignments for every possible robot pose in its map. The action update and per-
ception update processes must update the probability of every cell in this case. Kalman filter
localization represents the robot’s belief state using a singe, well-defined Gaussian proba-

bility density function, and thus retains just a and parameterization of the robot’s belief

about position with respect to the map. Updating the parameters of the Gaussian distribution
is all that is required. This fundamental difference in the representation of belief state leads
to the following advantages and disadvantages of the two methods, as presented in [44]:

• Markov localization allows for localization starting from any unknown position and
can thus recover from ambiguous situations because the robot can track multiple,
completely disparate possible positions. However, to update the probability of all
positions within the whole state space at any time requires a discrete representation
of the space (grid). The required memory and computational power can thus limit
precision and map size.

• Kalman filter localization tracks the robot from an initially known position and is in-
herently both precise and efficient. In particular, Kalman filter localization can be
used in continuous world representations. However, if the uncertainty of the robot
becomes too large (e.g. due to a robot collision with an object) and thus not truly un-
imodal, the Kalman filter can fail to capture the multitude of possible robot positions
and can become irrevocably lost.

In recent research projects improvements are achieved or proposed by either only updating
the state space of interest within the Markov approach [43] or by combining both methods
to create a hybrid localization system [44]. In the next two subsections we will present each
approach in detail.

5.6.2 Markov Localization (see also [42, 45, 71, 72])

Markov localization tracks the robot’s belief state using an arbitrary probability density
function to represent the robot’s position. In practice, all known Markov localization sys-
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tems implement this generic belief representation by first tessellating the robot configuration
space into a finite, discrete number of possible robot poses in the map. In actual applica-
tions, the number of possible poses can range from several hundred positions to millions of
positions.

Given such a generic conception of robot position, a powerful update mechanism is required
that can compute the belief state that results when new information (e.g. encoder values and
sensor values) is incorporated into a prior belief state with arbitrary probability density. The
solution is born out of probability theory, and so the next section describes the foundations
of probability theory that apply to this problem, notably Bayes formula. Then, two subse-
quent subsections provide case studies, one robot implementing a simple feature-driven to-
pological representation of the environment [45, 71, 72] and the other using a geometric
grid-based map[42, 43].

5.6.2.1 Introduction: applying probability theory to robot localization

Given a discrete representation of robot positions, in order to express a belief state we wish
to assign to each possible robot position a probability that the robot is indeed at that position.
From probability theory we use the term p(A) to denote the probability that A is true. This
is also called the prior probability of A because it measures the probability that A is true in-

dependent of any additional knowledge we may have. For example we can use to

denote the prior probability that the robot r is at position l at time t.

In practice, we wish to compute the probability of each individual robot position given the
encoder and sensor evidence the robot has collected. In probability theory, we use the term
p(A|B) to denote the conditional probability of A given that we know B. For example, we

use to denote the probability that the robot is at position l given that the robot’s

sensor inputs i.

The question is, how can a term such as be simplified to its constituent parts so

that it can be computed? The answer lies in the product rule, which states:

(5.18)

Equation 5.18 is intuitively straightforward, as the probability of both A and B being true is
being related to B being true and the other being conditionally true. But you should be able
to convince yourself that the alternate equation is equally correct:

(5.19)

Using Equations 5.18 and 5.19 together, we can derive Bayes formula for computing p(A|B):

(5.20)

We use Bayes rule to compute the robot’s new belief state as a function of its sensory inputs
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and its former belief state. But to do this properly, we must recall the basic goal of the Mark-
ov localization approach: a discrete set of possible robot positions L are represented. The

belief state of the robot must assign a probability for each location l in L.

The See function described in Equation 5.17 expresses a mapping from a belief state and
sensor input to a refined belief state. To do this, we must update the probability associated
with each position l in L, and we can do this by directly applying Bayes formula to every
such l. In denoting this, we will stop representing the temporal index t for simplicity and
will further use p(l) to mean p(r=l):

(5.21)

The value of p(i|l) is key to Equation 5.21, and this probability of a sensor input at each robot
position must be computed using some model. An obvious strategy would be to consult the
robot’s map, identifying the probability of particular sensor readings with each possible map
position, given knowledge about the robot’s sensor geometry and the mapped environment.
The value of p(l) is easy to recover in this case. It is simply the probability p(r=l) associated
with the belief state before the perceptual update process. Finally, note that the denominator
p(i) does not depend upon l; that is, as we apply Equation 5.21 to all positions l in L, the
denominator never varies. Because it is effectively constant, in practice this denominator is
usually dropped and, at the end of the perception update step, all probabilities in the belief
state are re-normalized to sum at 1.0.

Now consider the Act function of Equation 5.16. Act maps a former belief state and encoder
measurement (i.e. robot action) to a new belief state. In order to compute the probability of
position l in the new belief state, one must integrate over all the possible ways in which the
robot may have reached l according to the potential positions expressed in the former belief
state. This is subtle but fundamentally important. The same location l can be reached from
multiple source locations with the same encoder measurement o because the encoder mea-
surement is uncertain. Temporal indices are required in this update equation:

(5.22)

Thus, the total probability for a specific position l is built up from the individual contribu-

tions from every location in the former belief state given encoder measurement o.

Equations 5.21 and 5.22 form the basis of Markov localization, and they incorporate the
Markov assumption. Formally, this means that their output is a function only of the robot’s
previous state and its most recent actions (odometry) and perception. In a general, non-
Markovian situation, the state of a system depends upon all of its history. After all, the value
of a robot’s sensors at time t do not really depend only on its position at time t. They depend
to some degree on the trajectory of the robot over time; indeed on the entire history of the
robot. For example, the robot could have experienced a serious collision recently that has
biased the sensor’s behavior. By the same token, the position of the robot at time t does not
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192 Autonomous Mobile Robots
really depend only on its position at time t-1 and its odometric measurements. Due to its
history of motion, one wheel may have worn more than the other, causing a left-turning bias
over time that affects its current position.

So the Markov assumption is, of course, not a valid assumption. However the Markov as-
sumption greatly simplifies tracking, reasoning and planning and so it is an approximation
that continues to be extremely popular in mobile robotics.

5.6.2.2 Case Study I: Markov Localization using a Topological Map

A straightforward application of Markov localization is possible when the robot’s environ-
ment representation already provides an appropriate decomposition. This is the case when
the environment representation is purely topological.

Consider a contest in which each robot is to receive a topological description of the environ-
ment. The description would describe only the connectivity of hallways and rooms, with no
mention of geometric distance. In addition, this supplied map would be imperfect, contain-
ing several false arcs (e.g. a closed door). Such was the case for the 1994 AAAI National
Robot Contest, at which each robot’s mission was to use the supplied map and its own sen-
sors to navigate from a chosen starting position to a target room.

Dervish, the winner of this contest, employed probabilistic Markov localization and used
just this multiple hypothesis belief state over a topological environmental representation.
We now describe Dervish as an example of a robot with a topological representation and a
probabilistic localization algorithm.

Dervish, shown in Figure 5.20, includes a sonar arrangement custom-designed for the 1994
AAAI National Robot Contest. The environment in this contest consisted of a rectilinear
indoor office space filled with real office furniture as obstacles. Traditional sonars are ar-
ranged radially around the robot in a ring. Robots with such sensor configurations are sub-
ject to both tripping over short objects below the ring and to decapitation by tall objects
(such as ledges, shelves and tables) that are above the ring.

Dervish’s answer to this challenge was to arrange one pair of sonars diagonally upward to

Fig 5.20 Dervish exploring its environment
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detect ledges and other overhangs. In addition, the diagonal sonar pair also proved to ably
detect tables, enabling the robot to avoid wandering underneath tall tables. The remaining
sonars were clustered in sets of sonars, such that each individual transducer in the set would
be at a slightly varied angle to minimize specularity. Finally, two sonars near the robot’s
base were able to detect low obstacles such as paper cups on the floor.

We have already noted that the representation provided by the contest organizers was purely
topological, noting the connectivity of hallways and rooms in the office environment. Thus,
it would be appropriate to design Dervish’s perceptual system to detect matching perceptual
events: the detection and passage of connections between hallways and offices.

This abstract perceptual system was implemented by viewing the trajectory of sonar strikes
to the left and right sides of Dervish over time. Interestingly, this perceptual system would
use time alone and no concept of encoder value in order to trigger perceptual events. Thus,
for instance, when the robot detects a 7 to 17 cm indentation in the width of the hallway for
more than one second continuously, a closed door sensory event is triggered. If the sonar
strikes jump well beyond 17 cm for more than one second, an open door sensory event trig-
gers.

Sonars have a notoriously problematic error mode known as specular reflection: when the
sonar unit strikes a flat surface at a shallow angle, the sound may reflect coherently away
from the transducer, resulting in a large overestimate of range. Dervish was able to filter
such potential noise by tracking its approximate angle in the hallway and completely sup-
pressing sensor events when its angle to the hallway parallel exceeded 9 degrees. Interest-
ingly, this would result in a conservative perceptual system that would easily miss features
because of this suppression mechanism, particularly when the hallway is crowded with ob-
stacles that Dervish must negotiate. Once again, the conservative nature of the perceptual
system, and in particular its tendency to issue false negatives, would point to a probabilistic
solution to the localization problem so that a complete trajectory of perceptual inputs could
be considered.

Dervish’s environment representation was a classical topological map, identical in abstrac-
tion and information to the map provided by the contest organizers. Figure 5.21 depicts a
geometric representation of a typical office environment and the topological map for the
same office environment. One can place nodes at each intersection and in each room, re-
sulting in the case of figure 5.21 with four nodes total.

Once again, though, it is crucial that one maximize the information content of the represen-
tation based on the available percepts. This means reformulating the standard topological
graph shown in Figure 5.21 so that transitions into and out of intersections may both be used

Fig 5.21 A geometric office environment (left) and its topological analogue (right)
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for position updates. Figure 5.22 shows a modification of the topological map in which just
this step has been taken. In this case, note that there are 7 nodes in contrast to 4.

In order to represent a specific belief state, Dervish associated with each topological node n

a probability that the robot is at a physical position within the boundaries of n: .

As will become clear below, the probabilistic update used by Dervish was approximate,
therefore technically one should refer to the resulting values as likelihoods rather than prob-
abilities.

The perception update process for Dervish functions precisely as in Equation (5.21). Per-
ceptual events are generated asynchronously, each time the feature extractor is able to rec-
ognize a large-scale feature (e.g. doorway, intersection) based on recent ultrasonic values.
Each perceptual event consists of a percept-pair (a feature on one side of the robot or two
features on both sides).

Given a specific percept pair i, Equation (5.21) enables the likelihood of each possible po-
sition n to be updated using the formula:

(5.23)

The value of p(n) is already available from the current belief state of Dervish, and so the
challenge lies in computing p(i|n). The key simplification for Dervish is based upon the re-
alization that, because the feature extraction system only extracts 4 total features and be-
cause a node contains (on a single side) one of 5 total features, every possible combination
of node type and extracted feature can be represented in a 4 x 5 table.

Dervish’s certainty matrix (show in Table 5.1) is just this lookup table. Dervish makes the
simplifying assumption that the performance of the feature detector (i.e. the probability that
it is correct) is only a function of the feature extracted and the actual feature in the node.
With this assumption in hand, we can populate the certainty matrix with confidence esti-

Table 5.1: Dervish’s certainty matrix.

Wall Closed
Door

Open
Door

Open
Hallway

Foyer

Nothing detected 0.70 0.40 0.05 0.001 0.30

Closed door detected 0.30 0.60 0 0 0.05

Open door detected 0 0 0.90 0.10 0.15

Open hallway detected 0 0 0.001 0.90 0.50

Fig 5.22 A modification of the topological map to maximize information.
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mates for each possible pairing of perception and node type. For each of the five world fea-
tures that the robot can encounter (wall, closed door, open door, open hallway and foyer)
this matrix assigns a likelihood for each of the three one-sided percepts that the sensory sys-
tem can issue. In addition, this matrix assigns a likelihood that the sensory system will fail
to issue a perceptual event altogether (nothing detected).

For example, using the specific values in Table 5.1, if Dervish is next to an open hallway,
the likelihood of mistakenly recognizing it as an open door is 0.10. This means that for any
node n that is of type Open Hallway and for the sensor value i=Open door, p(i|n) = 0.10.
Together with a specific topological map, the certainty matrix enables straightforward com-
putation of p(i|n) during the perception update process.

For Dervish’s particular sensory suite and for any specific environment it intends to navi-
gate, humans generate a specific certainty matrix that loosely represents its perceptual con-
fidence, along with a global measure for the probability that any given door will be closed
versus opened in the real world.

Recall that Dervish has no encoders and that perceptual events are triggered asynchronously
by the feature extraction processes. Therefore, Dervish has no action update step as depicted
by Equation (5.22). When the robot does detect a perceptual event, multiple perception up-
date steps will need to be performed in order to update the likelihood of every possible robot
position given Dervish’s former belief state. This is because there is often a chance that the
robot has traveled multiple topological nodes since its previous perceptual event (i.e. false
negative errors). Formally, the perception update formula for Dervish is in reality a combi-
nation of the general form of action update and perception update. The likelihood of posi-
tion n given perceptual event i is calculated as in Equation (5.22):

(5.24)

The value of denotes the likelihood of Dervish being at position as represented

by Dervish’s former belief state. The temporal subscript t-i is used in lieu of t-1 because for

each possible position the discrete topological distance from to n can vary depending

on the specific topological map. The calculation of is performed by multi-

plying the probability of generating perceptual event i at position n by the probability of hav-

ing failed to generate perceptual events at all nodes between and n:

(5.25)

For example (figure 5.23), suppose that the robot has only two nonzero nodes in its belief
state, {1-2, 2-3}, with likelihoods associated with each possible position: p(1-2) = 1.0 and
p(2-3) = 0.2. For simplicity assume the robot is facing East with certainty. Note that the
likelihoods for nodes 1-2 and 2-3 do not sum to 1.0. These values are not formal probabil-
ities, and so computational effort is minimized in Dervish by avoiding normalization alto-
gether. Now suppose that a perceptual event is generated: the robot detects an open hallway
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on its left and an open door on its right simultaneously.

State 2-3 will progress potentially to states 3, 3-4 and 4. But states 3 and 3-4 can be elimi-
nated because the likelihood of detecting an open door when there is only wall is zero. The
likelihood of reaching state 4 is the product of the initial likelihood for state 2-3, 0.2, the like-
lihood of not detecting anything at node 3, (a), and the likelihood of detecting a hallway on
the left and a door on the right at node 4, (b). Note that we assume the likelihood of detecting
nothing at node 3-4 is 1.0 (a simplifying approximation).

(a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or open),
[(0.6)(0.4) + (1-0.6)(0.05)], and correctly detects nothing on its right, 0.7.

(b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and mis-
takes the right hallway for an open door, 0.10.

The final formula, (0.2)[(0.6)(0.4)+(0.4)(0.05)](0.7)[(0.9)(0.1)], yields a likelihood of 0.003
for state 4. This is a partial result for p(4) following from the prior belief state node 2-3.

Turning to the other node in Dervish’s prior belief state, 1-2 will potentially progress to
states 2, 2-3, 3, 3-4 and 4. Again, states 2-3, 3 and 3-4 can all be eliminated since the like-
lihood of detecting an open door when a wall is present is zero. The likelihood of state 2 is
the product of the prior likelihood for state 1-2, (1.0), the likelihood of detecting the door
on the right as an open door, [(0.6)(0) + (0.4)(0.9)], and the likelihood of correctly detecting
an open hallway to the left, 0.9. The likelihood for being at state 2 is then
(1.0)(0.4)(0.9)(0.9) = 0.3. In addition, 1-2 progresses to state 4 with a certainty factor of

, which is added to the certainty factor above to bring the total for state 4 to

0.00328. Dervish would therefore track the new belief state to be {2, 4}, assigning a very
high likelihood to position 2 and a low likelihood to position 4.

Empirically, Dervish’s map representation and localization system have proven to be suffi-
cient for navigation of four indoor office environments: the artificial office environment cre-
ated explicitly for the 1994 National Conference on Artificial Intelligence; the psychology
department, the history department and the computer science department at Stanford Uni-
versity. All of these experiments were run while providing Dervish with no notion of the
distance between adjacent nodes in its topological map. It is a demonstration of the power
of probabilistic localization that, in spite of the tremendous lack of action and encoder infor-
mation, the robot is able to navigate several real-world office buildings successfully.

Fig 5.23 A realistic indoor topological environment.
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One open question remains with respect to Dervish’s localization system. Dervish was not
just a localizer but also a navigator. As with all multiple hypothesis systems, one must ask
the question, how does the robot decide how to move, given that it has multiple possible ro-
bot positions in its representation? The technique employed by Dervish is a most common
technique in the mobile robotics field: plan the robot’s actions by assuming that the robot’s
actual position is its most likely node in the belief state. Generally, the most likely position
is a good measure of the robot’s actual world position. However, this technique has short-
comings when the highest and second highest most likely positions have similar values. In
the case of Dervish, it nonetheless goes with the highest likelihood position at all times, save
at one critical juncture. The robot’s goal is to enter a target room and remain there. There-
fore, from the point of view of its goal, it is critical that it finish navigating only when the
robot has strong confidence in being at the correct final location. In this particular case, Der-
vish’s execution module refuses to enter a room if the gap between the most likely position
and the second likeliest position is below a preset threshold. In such a case, Dervish will
actively plan a path that causes it to move further down the hallway in an attempt to collect
more sensor data and thereby increase the relative likelihood of one position in the belief
state.

Although computationally unattractive, one can go further, imagining a planning system for
robots such as Dervish for which one specifies a goal belief state rather than a goal position.
The robot can then reason and plan in order to achieve a goal confidence level, thus explic-
itly taking into account not only robot position but also the measured likelihood of each po-
sition. An example of just such a procedure is the Sensory Uncertainty Field of Latombe
[90], in which the robot must find a trajectory that reaches its goal while maximizing its lo-
calization confidence enroute.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.6.2.3 Case Study II: Markov Localization using a Grid Map

The major weakness of a purely topological decomposition of the environment is the reso-
lution limitation imposed by such a granular representation. The position of the robot is usu-
ally limited to the resolution of a single node in such cases, and this may be undesirable for
certain applications.

In this case study, we examine the work of Burgard et al. [42, 43] in which far more precise
navigation is made possible using a grid-based representation while still employing the
Markov localization technique.

The robot used by this research, Rhino, is an RWI B24 robot with 24 sonars and 2 Sick laser
rangefinders. Clearly, at the sensory level this robot accumulates greater and more accurate
range data than is possible with the handful of sonar sensors mounted on Dervish. In order
to make maximal use of this fine-grained sensory data, Rhino uses a 2D geometric environ-
mental representation of free and occupied space. This metric map is tessellated regularly
into a fixed decomposition grid with each cell occupying 4 - 64cm in various instantiations.

Like Dervish, Rhino uses multiple hypothesis belief representation. In line with the far im-
proved resolution of the environment representation, the belief state representation of Rhino

consists of a 15 x 15 x 15 3D array representing the probability of possible robot posi-

tions (see Figure 5.24). The resolution of the array is 15cm x 15cm x 1°. Note that unlike
Dervish, which assumes its orientation is approximate and known, Rhino explicitly repre-
sents fine-grained alternative orientations, and so its belief state formally represents three
degrees of freedom. As we have stated before, the resolution of the belief state representa-
tion must match the environment representation in order for the overall system to function
well.

Whereas Dervish made use only perceptual events, ignoring encoder inputs and therefore
metric distance altogether, Rhino uses the complete Markov probabilistic localization ap-
proach summarized in Section (5.6.2.1), including both an explicit action update phase and

15
3

Fig 5.24 The belief state representation 3D array used by Rhino
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a perception update phase at every cycle.

The discrete Markov chain version of action update is performed because of the tessellated
representation of position. Given encoder measurements o at time t, each updated position
probability in the belief state is expressed as a sum over previous possible positions and the
motion model:

(5.26)

Note that Equation (5.26) is simply a discrete version of Equation (5.22). The specific mo-
tion model used by Rhino represents the result of motion as a Gaussian that is bounded (i.e.
the tails of the distribution are finite). Rhino’s kinematic configuration is a 3-wheel syn-
chro-drive rather than a differential drive robot. Nevertheless, the error ellipses depicted in
Figures (5.4) and (5.5) are similar to the Gaussian bounds that result from Rhino’s motion
model.

The perception model follows Bayes formula precisely as in Equation (5.21). Given a range
perception i the probability of the robot being at each location l is updated as follows:

(5.27)

Note that a denominator is used by Rhino, although the denominator is constant for varying
values of l. This denominator acts as a normalizer to ensure that the probability measures in
the belief state continue to sum to 1.

The critical challenge is, of course, the calculation of p(i|l). In the case of Dervish, the num-
ber of possible values for i and l were so small that a simple table could suffice. However,
with the fine-grained metric representation of Rhino, the number of possible sensor readings
and environmental geometric contexts is extremely large. Thus, Rhino computes p(i|l) di-
rectly using a model of the robot’s sensor behavior, its position l and the local environmental
metric map around l.

The sensor model must calculate the probability of a specific perceptual measurement given
that its likelihood is justified by known errors of the sonar or laser rangefinder sensors.
Three key assumptions are used to construct this sensor model:

1 If an object in the metric map is detected by a range sensor, the measurement error
can be described with a distribution that has a mean at the correct reading.

2 There should always be a nonzero chance that a range sensor will read any measure-
ment value, even if this measurement disagrees sharply with the environmental ge-
ometry.

3 In contrast to the generic error described in #2, there is a specific failure mode in
ranging sensors whereby the signal is absorbed or coherently reflected, causing the
sensor’s range measurement to be maximal. Therefore, there is a local peak in the
probability density distribution at the maximal reading of a range sensor.
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By validating these assumptions using empirical sonar trials in multiple environments, the
research group has delivered to Rhino a conservative and powerful sensor model for its par-
ticular sensors.

Figure 5.25 provides a simple 1D example of the grid-based Markov localization algorithm.
The robot begins with a flat probability density function for its possible location. In other
words, it initially has no bias regarding position. As the robot encounters first one door and
then a second door, the probability density function over possible positions becomes first
multimodal and finally unimodal and sharply defined. The ability of a Markov localization
system to localize the robot from an initially lost belief state is its key distinguishing feature.

The resulting robot localization system has been part of a navigation system that has dem-
onstrated great success both at the University of Bonn and at a public museum in Bonn. This
is a challenging application because of the dynamic nature of the environment, as the robot’s
sensors are frequently subject to occlusion due to humans gathering around the robot. Rhi-
no’s ability to function well in this setting is a demonstration of the power of the Markov
localization approach

Reducing computational complexity: Randomized Sampling

A great many steps are taken in real-world implementations such as Rhino in order to effect
computational gains. These are valuable because, with an exact cell decomposition repre-
sentation and use of raw sensor values rather than abstraction to features, such a robot has a

Fig 5.25 Improving belief state by moving. Roland, we need to re-make this picture
for copyright reasons probably.
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massive computational effort associated with each perceptual update.

One class of techniques deserves mention because it can significantly reduce the computa-
tional overhead of techniques that employ fixed-cell decomposition representations. The
basic idea, which we call randomized sampling is known alternatively as Particle filter al-
gorithms, Condensation algorithms and Monte Carlo algorithms [ROLAND, reference the
Thrun et al. paper on "Robust Monte Carlo" in my text file].

Irrespective of the specific technique, the basic algorithm is the same in all these cases. In-
stead of representing every possibe robot position by representing the complete and correct
belief state, an approximate belief state is constructed by representing only a subset of the
complete set of possible locations that should be considered.

For example, consider a robot with a complete belief state of 10,000 possible locations at
time t. Instead of tracking and updating all 10,000 possible locations based on a new sensor
measurement, the robot can select only 10% of the stored locations and update only those
locations. By weighting this sampling process with the probability values of the locations,
one can bias the system to generate more samples at local peaks in the probability density
function. So, the resulting 1,000 locations will be concentrated primarily at the highest
probability locations. This biasing is desirable, but only to a point.

We also wish to ensure that some less likely locations are tracked, as otherwise, if the robot
does indeed receive unlikely sensor measurements, it will fail to localize. This randomiza-
tion of the sampling process can be performed by adding additional samples from a flat dis-
tribution for example. Further enhancements of these randomized methods enable the
number of statistical samples to be varied on-the-fly, based for instance on the ongoing lo-
calization confidence of the system. This further reduces the number of samples required
on average while guaranteeing that a large number of samples will be used when necessary
[ROLAND, reference the Fox NIPS article on KLD-Sampling Adaptive Particle Filters]

These sampling techniques have resulted in robots that function indistinguishably as com-
pared to their full belief state set ancestors, yet use computationally a fraction of the resourc-
es. Of course, such sampling has a penalty: completeness. The probabilistically complete
nature of Markov localization is violated by these sampling approaches because the robot is
failing to update all the nonzero probability locations, and thus there is a danger that the ro-
bot, due to an unlikely but correct sensor reading, could become truly lost. Of course, re-
covery from a lost state is feasible just as with all Markov localization techniques.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.6.3 Kalman Filter Localization

The Markov localization model can represent any probability density function over robot
position. This approach is very general but, due to its generality, inefficient. A successful
alternative is to use a more compact representation of a specific class of probability densi-
ties. The Kalman filter does just this, and is an optimal recursive data processing algorithm.
It incorporates all information, regardless of precision, to estimate the current value of the
variable of interest. A comprehensive introduction can be found in [46] and a more detailed
treatment is presented in [28].

Figure 5.26 depicts the a general scheme of Kalman filter estimation, where the system has
a control signal and system error sources as inputs. A measuring device enables measuring
some system states with errors. The Kalman filter is a mathematical mechanism for produc-
ing an optimal estimate of the system state based on the knowledge of the system and the
measuring device, the description of the system noise and measurement errors and the un-
certainty in the dynamics models. Thus the Kalman filter fuses sensor signals and system
knowledge in an optimal way. Optimality depends on the criteria chosen to evaluate the per-
formance and on the assumptions. Within the Kalman filter theory the system is assumed to
be linear and white with Gaussian noise. As we have discussed earlier, the assumption of
Gaussian error is invalid for our mobile robot applications but, nevertheless, the results are
extremely useful. In other engineering disciplines, the Gaussian error assumption has in
some cases been shown to be quite accurate [46].

We begin with a subsection that introduces Kalman filter theory, then we present an appli-
cation of that theory to the problem of mobile robot localization. Finally, the third subsec-
tion will present a case study of a mobile robot that navigates indoor spaces by virtue of
Kalman filter localization.

System

Fig 5.26 Typical Kalman filter application [46]

System state
(desired but
not known)
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Measuring
devices
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Observed
measurement
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5.6.3.1 Introduction to Kalman Filter Theory

The basic Kalman filter method allows multiple measurements to be incorporated optimally
into a single estimate of state. In demonstrating this, first we make the simplifying assump-
tion that the state does not change (e.g. the robot does not move) between the acquisition of
the first and second measurement. After presenting this static case, we can introduce dy-
namic prediction readily.

Static Estimation

Assume we have taken two measurements, one with an ultrasonic range sensor at time k and
one with a more precise laser range sensor at time k+1. Based on each measurement we are
able to estimate the robot’s position. Such an estimate derived from the first sensor mea-
surements is q1 and the estimate of position based on the second measurement is q2. Since

we know that each measurement can be inaccurate, we wish to modulate these position es-
timates based on the measurement error expected from each sensor. Suppose that we use

two variances and to predict the error associated with each measurement. We will,

of course, assume a unimodal error distribution throughout the remainder of the Kalman fil-
ter approach, yielding the two robot position estimates:

with variance (5.28)

with variance . (5.29)

So we have two measurements available to estimate the robots position. The question is,

how do we fuse (combine) these data to get the best estimate for the robot position?

We are assuming that there was no robot motion between time k and time k+1, and therefore
we can directly apply the same weighted least square technique of Equation 4.61 in Section
4.3.1.1. Thus we write:

(5.30)

with wi being the weight of measurement i. To find the minimum error we set the derivative

of S equal to zero.

(5.31)
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(5.32)

(5.33)

If we take as the weight wi

(5.34)

then the value of in terms of two measurements can be defined as follows:

(5.35)

; (5.36)

Note that, from (5.36) we can see that the resulting variance is less than all the variances

of the individual measurements. Thus the uncertainty of the position estimate has been

decreased by combining the two measurements. This demonstrates that even poor measure-
ments only increase the precision of an estimate (fig. 5.27), a result that we expect based on
Information Theory.

Equation (5.35) can be rewritten as

(5.37)

or, in final form that is used in Kalman filter implementation
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(5.38)

where

; ; (5.39)

Equation (5.38) tells us, that the best estimate of the state at time k+1 is equal

to the best prediction of the value before the new measurement is taken, plus a cor-

rection term of an optimal weighting value times the difference between and the best

prediction at time k+1. The updated variance of the state is given using equation

(5.36)

(5.40)

Dynamic Estimation

Next, consider a robot that moves between successive sensor measurements. Suppose that
the motion of the robot between times k and k+1 is described by the velocity u and the noise
w which represents the uncertainty of the actual velocity:

(5.41)

Fig 5.27 Fusing probability density of two estimates [46]
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If we now start at time k, knowing the variance of the robot position at this time and

knowing the variance of the motion, we obtain for the time just when the measure-

ment is taken:

(5.42)

(5.43)

where:

tk’ = tk+1

tk+1 and tk are the time in seconds at k+1 and k respectively.

Thus is the optimal prediction of the robot’s position just as the measurement is taken

at time k+1. It describes the growth of position error until a new measurement is taken (fig.
5.28).

We can now rewrite equation (5.38) and (5.39) using equation (5.42) and (5.43).

(5.44)

(5.45)

The optimal estimate at time k+1 is given by the last estimate at k and the estimate of the
robot motion including the estimated movement errors.

By extending the above equations to the vector case and allowing time varying parameters
in the system and a description of noise, we can derive the Kalman filter localization algo-
rithm.
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Fig 5.28 Propagation of probability density of a moving robot [46]
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5.6.3.2 Application to mobile robots: Kalman filter localization

The Kalman filter is an optimal and efficient sensor fusion technique. Application of the
Kalman filter to localization requires posing the robot localization problem as a sensor fu-
sion problem. Recall that the basic probabilistic update of robot belief state can be segment-
ed into two phases, perception update and action update as specified by Equations 5.21 and
5.22.

The key difference between the Kalman filter approach and our earlier Markov localization
approach lies in the perception update process. In Markov localization, the entire percep-
tion, i.e. the robot’s set of instantaneous sensor measurements, is used to update each possi-
ble robot position in the belief state individually using Bayes formula. In some cases, the
perception is abstract, having been produced by a feature extraction mechanism as in Der-
vish. In other cases, as with Rhino, the perception consists of raw sensor readings.

By contrast, perception update using a Kalman filter is a multi-step process. The robot’s to-
tal sensory input is treated, not as a monolithic whole, but as a set of extracted features that
each relate to objects in the environment. Given a set of possible features, the Kalman filter
is used to fuse the distance estimate from each feature to a matching object in the map. In-
stead of carrying out this matching process for many possible robot locations individually
as in the Markov approach, the Kalman filter accomplishes the same probabilistic update by
treating the whole, unimodal and Gaussian belief state at once. Figure 5.29 depicts the par-
ticular schematic for Kalman filter localization.

The first step is action update or position prediction, the straightforward application of a
Gaussian error motion model to the robot’s measured encoder travel. The robot then collects
actual sensor data and extracts appropriate features (e.g. lines, doors, or even the value of a
specific sensor) in the observation step. At the same time, based on its predicted position in
the map, the robot generates a measurement prediction which identifies the features that the

Actual Observations
on-board sensors

Map
data base

Position Prediction
Observation Prediction

Fig 5.29 Schematic for Kalman filter mobile robot localization (see [9])
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robot expects to find and the positions of those features. In matching the robot identifies the
best pairings between the features actually extracted during observation and the expected
features due to measurement prediction. Finally, the Kalman filter can fuse the information
provided by all of these matches in order to update the robot belief state in estimation.

In the following sub-sections these five steps are described in greater detail. The presenta-
tion is based on the work of Leonard and Durrant-Whyte [9 page 61-65].

1. Robot Position Prediction

The robot’s position at time step k+1 is predicted based on its old location (at time step k)

and its movement due to the control input :

(5.46)

For the differential drive robot, is derived in Equations (5.6) and (5.7) re-

spectively.

Knowing the plant and error model, we can also compute the variance associ-

ated with this prediction (see eq. (5.9) section 5.2.4):

(5.47)

This allows us to predict the robot’s position and its uncertainty after a movement specified

by the control input . Note that the belief state is assumed to be Gaussian, and so we

can characterize the believe state with just the two parameters and .

2. Observation

The second step it to obtain sensor measurements from the robot at time k+1. In

this presentation, we assume that the observation is the result of a feature extraction process

executed on the raw sensor data. Therefore, the observation consists of a set of single

observations extracted from various sensors. Formally each single observation can

represent an extracted features such as a line or door, or even a single, raw sensor value.

The parameters of the features are usually specified in the sensor frame and therefore in a
local reference frame of the robot. However, for matching we need to represent the obser-

vations and measurement predictions in the same frame . In our presentation we will

transform the measurement predictions from the global coordinate frame to the sensor frame

. This transformation is specified in the function discussed in the next paragraph.
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3. Measurement Prediction

We use the predicted robot position and the map to generate multiple pre-

dicted feature observations . Each predicted feature has its position transformed into the

sensor frame:

(5.48)

We can define the measurement prediction as the set containing all predicted feature ob-

servations:

(5.49)

The predicted state estimate is used to compute the measurement Jacobian

for each prediction. As you will see in the example below, the function is mainly a coor-

dinate transformation between the world frame and the sensor frame.

4. Matching

At this point we have a set of actual, single observations, which are features in sensor space,
and we also have a set of predicted features, also positioned in sensor space. The matching
step has the purpose of identifying all of the single observations that match specific predict-
ed features well enough to be used during the estimation process. In other words, we will,
for a subset of the observations and a subset of the predicted features, find pairings that in-
tuitively say "this observation is the robot’s measurement of this predicted feature based on
the map."

Formally, the goal of the matching procedure is to produce an assignment from observations

to the targets (stored in the map). For each measurement prediction for which

a corresponding observation is found we calculate the innovation . Innovation is

a measure of the difference between the predicted and observed measurements:

(5.50)

The innovation covariance can be found by applying the error propagation

law (section 4.2.3 equation (4.60)):

(5.51)

where represents the covariance (noise) of the measurement .

To determine the validity of the correspondence between measurement prediction and ob-
servation, a validation gate has to be specified. A possible definition of the validation gate
is the Mahalanobis distance:
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(5.52)

However, dependent on the application, the sensors and the environment models, more so-
phisticated validation gates might be employed.

The validation equation is used to test observation for membership in the valida-

tion gate for each predicted measurement. When a single observation falls in the validation
gate, we get a successful match. If one observation falls in multiple validation gates, the best
matching candidate is selected or multiple hypothesis are tracked. Observations that do not
fall in the validation gate are simply ignored for localization. Such observations could have
resulted from objects not in the map, such as new objects (e.g. someone places a large box
in the hallway) or transient objects (e.g. humans standing next to the robot may form a line
feature). One approach is to take advantage of such unmatched observations to populate the
robot’s map.

5. Estimation: applying the Kalman Filter

Next we compute the best estimate of the robot’s position based on the po-

sition prediction and all the observations at time k+1. To do this position update, we first

stack the validated observations into a single vector to form and desig-

nate the composite innovation . Then we stack the measurement Jacobians for

each validated measurement together to form the composite Jacobian and the measure-

ment error (noise) vector . We can then compute the com-

posite innovation covariance according to equation (5.51) and by utilizing the

well-known result [28] that the Kalman gain can be written as

(5.53)

we can update the robot’s position estimate

(5.54)

with the associated variance

(5.55)

For the one-dimensional case and with we can show that this for-

mula corresponds to the 1D case derived earlier:

Equation 5.53 is simplified to:

vij
T

k 1+( ) ΣIN ij,
1–

k 1+( ) vij k 1+( ) g
2≤⋅⋅

zj k 1+( )

p̂ k 1 k 1+ +( )

zj k 1+( ) z k 1+( )

v k 1+( ) hi∇

h∇
ΣR k 1+( ) diag ΣR i, k 1+( )[ ]=

ΣIN k 1+( )

K k 1+( ) Σp k 1 k+( ) h
T ΣIN

1–
k 1+( )⋅∇⋅=

p̂ k 1 k 1+ +( ) p̂ k 1 k+( ) K k 1+( ) v k 1+( )⋅+=

Σp k 1 k 1+ +( ) Σp k 1 k+( ) K– k 1+( ) ΣIN k 1+( ) K
T

k 1+( )⋅⋅=

hi zt p̂ k 1+ k( ),( ) zt=



5 Mobile Robot Localization 211
(5.56)

corresponding to equation (5.45) and Equation 5.54 simplifies to:

(5.57)

corresponding to equation (5.44).

5.6.3.3 Case study: Kalman filter localization with line feature extraction

The Pygmalion robot at EPFL is a differential drive robot that uses a laser rangefinder as its
primary sensor [39], [76]. In contrast to both Dervish and Rhino, the environmental repre-
sentation of Pygmalion is continuous and abstract: the map consists of a set of infinite lines
describing the environment. Pygmalion’s belief state is, of course, represented as a Gauss-
ian distribution since this robot uses the Kalman filter localization algorithm. The value of

its mean position is represented to a high level of precision, enabling Pygmalion to local-

ize with very high precision when desired. Below, we present details for Pygmalion’s im-
plementation of the five Kalman filter localization steps. For simplicity we assume that the

sensor frame is equal to the robot frame . If not specified all the vectors are rep-

resented in the world coordinate system .

1. Robot Position Prediction

At the time increment k the robot is at position and its best po-

sition estimate is . The control input drives the robot to the position

(fig. 5.30).

The robot position prediction at the time increment k+1 can be computed from the

previous estimate and the odometric integration of the movement. For the differen-

tial drive that Pygmalion has we can use the model (odometry) developed in section 5.2.4:
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(5.58)

with the updated covariance matrix

(5.59)

where

(5.60)

2. Observation

For line based localization, each single observation (i.e. a line feature) is extracted from the

raw laser rangefinder data and consists of the two line parameters , or , (fig.

4.36) respectively. For a rotating laser rangefinder, a representation in the polar coordinate
frame is more appropriate and so we use this coordinate frame here:

(5.61)

x

y

Fig 5.30 Prediction of the robots position (magenta) based on its former position
(blue) and the executed movement. The ellipses drawn around the robot po-
sitions represent the uncertainties in the x,y direction (e.g. ). The uncer-

tainty of the orientation is not represented in the picture.
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After acquiring the raw data at time k+1, lines and their uncertainties are extracted (fig.

5.31a/b). This leads to observed lines with line parameters (5.31c) and a covari-

ance matrix for each line that can be calculated from the uncertainties of all the measurement
points contributing to each line as developed for line extraction in Section 4.3.1.1:

(5.62)

3. Measurement Prediction

Base on the stored map and the predicted robot position , the measurement predic-

tions of expected features are generated (fig. 5.32). To reduce the required calculation

power, there is often an additional step that first selects the possible features, in this case
lines, from the whole set of features in the map. These lines are stored in the map and spec-

ified in the world coordinate system . Therefore they need to be transformed to the ro-

bot frame :

Fig 5.31 Observation: From the raw data
(a) acquired by the laser scanner
at time k+1, lines are extracted
(b). The line parameters and

and its uncertainties can be

represented in the model space
(c).
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(5.63)

According to figure (5.32), the transformation is given by

(5.64)

and its Jacobian by

(5.65)

The measurement prediction results in predicted lines represented in the robot coordinate
frame (fig. 5.33). They are uncertain, because the prediction of robot position is uncertain.

4. Matching

For matching, we must find correspondence (or a pairing) between predicted and observed
features (fig. 5.34). In our case we take the Mahalanobis distance

(5.66)
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Fig 5.32 Representation of the target position in the world coordinate frame
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with

(5.67)

(5.68)

to enable finding the best matches while eliminating all other remaining observed and pre-

Fig 5.33 Measurement predictions:
Based on the map and the
estimated robot position the
targets (visible lines) are
predicted. They are repre-
sented in the model space
similar to the observations. αi

r

π-π

line i

0

ri

Fig 5.34 Matching: The observations (green) and measurement prediction (magen-
ta) are matched and the innovation and its uncertainties are calculated.
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dicted unmatched features.

5. Estimation

Applying the Kalman filter results in a final pose estimate corresponding to the weighted
sum of (fig 5.35)

– the pose estimates of each matched pairing of observed and predicted features

– robot position estimation based on odometry and observation positions

Fig 5.35 Kalman filter estimation of the new robot position: By fusing the prediction
of robot position (magenta) with the innovation gained by the measurements

(green) we get the updated estimate of the robot position (red).p̂ k k( )
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5.7 Other Examples of Localization Systems

Markov localization and Kalman filter localization have been two extremely popular strat-
egies for research mobile robot systems navigating indoor environments. They have strong
formal bases and therefore well-defined behavior. But there are a large number of other lo-
calization techniques that have been used with varying degrees of success on commercial
and research mobile robot platforms. We will not explore the space of all localization sys-
tems in detail. Refer to surveys such as [4] for such information.

There are, however, several categories of localization techniques that deserve mention. Not
surprisingly, many implementations of these techniques in commercial robotics employ
modifications of the robot’s environment, something that the Markov localization and Kal-
man filter localization communities eschew. In the following sections, we briefly identify
the general strategy incorporated by each category and reference example systems, includ-
ing as appropriate those that modify the environment and those that function without envi-
ronmental modification.

Landmark-based navigation

Landmarks are generally defined as passive objects in the environment that provide a high
degree of localization accuracy when they are within the robot’s field of view. Mobile ro-
bots that make use of landmarks for localization generally use artificial markers that have
been placed by the robot’s designers to make localization easy.

The control system for a landmark-based navigator consists of two discrete phases. When
a landmark is in view, the robot localizes frequently and accurately, using action update and
perception update to track its position without cumulative error. But when the robot is in no
landmark "zone," then only action update occurs, and the robot accumulates position uncer-
tainty until the next landmark enters the robot’s field of view.

The robot is thus effectively dead-reckoning from landmark zone to landmark zone. This in
turn means the robot must consult its map carefully, ensuring that each motion between
landmarks is sufficiently short, given its motion model, that it will be able to localize suc-
cessful upon reaching the next landmark.

Figure 5.36 shows one instantiation of landmark-based localization. The particular shape of
the landmarks enables reliable and accurate pose estimation by the robot, which must travel

Fig 5.36 Z-shaped landmarks on the ground
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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using dead reckoning between the landmarks.

One key advantage of the landmark-based navigation approach is that a strong formal theory
has been developed for this general system architecture [113]. In this work, the authors have
shown precise assumptions and conditions which, when satisfied, guarantee that the robot
will always be able to localize successfully. This work also led to a real-world demonstra-
tion of landmark-based localization. Standard sheets of paper were placed on the ceiling of
the Robotics Laboratory at Stanford University, each with a unique checkerboard pattern.
A Nomadics 200 mobile robot was fitted with a monochrome CCD camera aimed vertically
up at the ceiling. By recognizing the paper landmarks, which were placed approximately 2
meters apart, the robot was able to localize to within several centimeters, then move using
dead-reckoning to another landmark zone.

The primary disadvantage of landmark-based navigation is that in general it requires signif-
icant environmental modification. Landmarks are local, and therefore a large number is usu-
ally required to cover a large factory area or research laboratory. For example, the Robotics
Laboratory at Stanford made use of approximately 30 discrete landmarks, all affixed indi-
vidually to the ceiling.

Globally unique localization

The landmark-based navigation approach makes a strong general assumption: when the
landmark is in the robot’s field of view, localization is essentially perfect. One way to reach
the Holy Grail of mobile robotic localization is to effectively enable such an assumption to
be valid no matter where the robot is located. It would be revolutionary if a look at the ro-
bot’s sensors immediately identified its particular location, uniquely, and repeatedly.

Such a strategy for localization is surely aggressive, but the question of whether it can be
done is primarily a question of sensor technology and sensing software. Clearly, such a lo-
calization system would need to use a sensor that collects a very large amount of informa-
tion. Since vision does indeed collect far more information than previous sensors, it has
been used as the sensor of choice in research towards globally unique localization.

Figure (4.50) depicts the image taken by a catadioptric camera system. If humans were able
to look at an individual such picture and identify the robot’s location in a well-known envi-
ronment, then one could argue that the information for globally unique localization does ex-
ist within the picture; it must simply be teased out.

One such approach has been attempted by several researchers and involves constructing one
or more image histograms to represent the information content of an image stably (see for
example Figure 4.51 and Section 4.3.2.2). A robot using such an image histogramming sys-
tem has been shown to uniquely identify individual rooms in an office building as well as
individual sidewalks in an outdoor environment. However, such a system is highly sensitive
to external illumination and provides only a level of localization resolution equal to the vi-
sual footprint of the camera optics.

The Angular histogram depicted in Figure 5.37 is another example in which the robot’s sen-
sor values are transformed into an identifier of location. However, due to the limited infor-
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mation content of sonar ranging strikes, it is likely that two places in the robot’s environment
may have angular histograms that are too similar to be differentiated successfully.

One way of attempting to gather sufficient sonar information for global localization is to al-
low the robot time to gather a large amount of sonar data into a local evidence grid (i.e. oc-
cupancy grid) first, then match the local evidence grid with a global metric map of the
environment. In [115] the researchers demonstrate such a system as able to localize on-the-
fly even as significant changes are made to the environment, degrading the fidelity of the
map. Most interesting is that the local evidence grid represents information well enough that
it can be used to correct and update the map over time, thereby leading to a localization sys-
tem that provides corrective feedback to the environment representation directly. This is
similar in spirit to the idea of taking rejected observed features in the Kalman filter localiza-
tion algorithm and using them to create new features in the map.

A most promising, new method for globally unique localization is called Mosaic-based lo-
calization [114]. This fascinating approach takes advantage of an environmental feature that
is rarely used by mobile robots: fine-grained floor texture. This method succeeds primarily
because of the recent ubiquity of very fast processors, very fast cameras and very large stor-
age media.

The robot is fitted with a high-quality high-speed CCD camera pointed toward the floor, ide-
ally situated between the robot’s wheels and illuminated by a specialized light pattern off
the camera axis to enhance floor texture. The robot begins by collecting images of the entire
floor in the robot’s workspace using this camera. Of course the memory requirements are
significant, requiring a 10GB drive in order to store the complete image library of a 300 x
300 meter area.

Once the complete image mosaic is stored, the robot can travel any trajectory on the floor
while tracking its own position without difficulty. Localization is performed by simply re-

Fig 5.37 The angular histogram: Example
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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cording one image, performing action update, then performing perception update by match-
ing the image to the mosaic database using simple techniques based on image database
matching. The resulting performance has been impressive: such a robot has been shown to
localize repeatedly with 1mm precision while moving at 25 km/hr.

The key advantage of globally unique localization is that, when these systems function cor-
rectly, they greatly simplify robot navigation. The robot can move to any point and will al-
ways be assured of localizing by collecting a sensor scan.

But the main disadvantage of globally unique localization is that it is likely that this method
will never offer a complete solution to the localization problem. There will always be cases
where local sensory information is truly ambiguous and, therefore, globally unique localiza-
tion using only current sensor information is unlikely to succeed. Humans often have excel-
lent local positioning systems, particularly in non-repeating and well-known environments
such as their homes. However, there are a number of environments in which such immediate
localization is challenging even for humans: consider hedge mazes and large new office
buildings with repeating halls that are identical. Indeed, the mosaic-based localization pro-
totype described above encountered such a problem in its first implementation. The floor of
the factory floor had been freshly painted and was thus devoid of sufficient micro-fractures
to generate texture for correlation. Their solution was to modify the environment after all,
painting random texture onto the factory floor.

Positioning Beacon systems

One of the most reliable solutions to the localization problem is to design and deploy an ac-
tive beacon system specifically for the target environment. This is the preferred technique
used by both industry and military applications as a way of ensuring the highest possible re-
liablility of localization. The GPS system can be considered as just such a system (see Sec-
tion 4.1.5.1).

Figure 5.38 depicts one such beacon arrangement for a collection of robots. Just as with
GPS, by designing a system whereby the robots localize passively while the beacons are ac-
tive, any number of robots can simultaneously take advantage of a single beacon system. As

Fig 5.38 Active ultrasonic beacons.
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with most beacon systems, the design depicted depends foremost upon geometric principles
to effect localization. In this case the robots must know the positions of the two pinger units
in the global coordinate frame in order to localize themselves to the global coordinate frame.

A popular type of beacon system in industrial robotic applications is depicted in Figure 5.39.
In this case beacons are retroreflective markers that can be easily detected by a mobile robot
based on their reflection of energy back to the robot. Given known positions for the optical
retroreflectors, a mobile robot can identify its position whenever it has three such beacons
in sight simultaneously. Of course, a robot with encoders can localize over time as well, and
does not need to measure its angle to all three beacons at the same instant.

The advantage of such beacon-based systems is usually extremely high engineered reliabil-
ity. By the same token, significant engineering usually surrounds the installation of such a
system in a specific commercial setting. Therefore, moving the robot to a different factory
floor will be both time-consuming and expensive. Usually, even changing the routes used
by the robot will require serious re-engineering.

Route-based localization

Even more reliable than beacon-based systems are route-based localization strategies. In
this case, the route of the robot is explicitly marked so that it can determine its position, not
relative to some global coordinate frame, but relative to the specific path it is allowed to trav-
el. There are many techniques for marking such a route and the subsequent intersections.
In all cases, one is effectively creating a railway system, except that the railway system is
somewhat more flexible and certainly more human-friendly than a physical rail. For exam-
ple, high uv-reflective, optically transparent paint can mark the route such that only the ro-
bot, using a specialized sensor, easily detects it. Alternatively, a guide wire buried
underneath the hall can be detected using inductive coils located on the robot chassis.

In all such cases, the robot localization problem is effectively trivialized by forcing the robot
to always follow a prescribed path. To be fair, there are new industrial unmanned guided

Fig 5.39 Passive optical beacons
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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vehicles that do deviate briefly from their route in order to avoid obstacles. Nevertheless,
the cost of this extreme reliability is obvious: the robot is much more inflexible give such
localization means, and therefore any change to the robot’s behavior requires significant en-
gineering and time.
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5.8 Autonomous Map Building

All of the localization strategies we have discussed require human effort to install the robot
into a space. Artificial environmental modifications may be necessary. Even if this is not
so, a map of the environment must be created for the robot. But a robot that localizes suc-
cessfully has the right sensors for detecting the environment, and so the robot ought to build
its own map. This ambition goes to the heart of autonomous mobile robotics. In prose, we
can express our eventual goal as follows:

Starting from an arbitrary initial point, a mobile robot should be able to autonomously ex-
plore the environment with its on board sensors, gain knowledge about it, interpret the
scene, build an appropriate map and localize itself relative to this map.

Accomplishing this goal robustly is probably years away, but an important subgoal is the
invention of techniques for autonomous creation and modification of an environment map.
Of course a mobile robot’s sensors have only limited range, and so it must physically explore
its environment to build such a map. So, the robot must not only create a map but it must do
so while moving and localizing to explore the environment. In the robotics community, this
is often called the Simultaneous Localization and Mapping (SLAM) problem, arguably the
most difficult problem specific to mobile robot systems.

The reason that SLAM is difficult is born precisely from the interaction between the robot’s
position updates as it localizes and its mapping actions. If a mobile robot updates its position
based on an observation of an imprecisely known feature, the resulting position estimate be-
comes correlated with the feature location estimate. Similarly, the map becomes correlated
with the position estimate if an observation taken from an imprecisely known position is
used to update or add a feature to the map. The general problem of map building is thus an
example of a chicken-and-egg problem. For localization the robot needs to know where the
features are whereas for map building the robot needs to know where it is on the map.

The only path to a complete and optimal solution to this joint problem is to consider all the
correlations between between position estimation and feature location estimation. Such
cross-correlated maps are called stochastic maps, and we begin with a discussion of the the-
ory behind this approach in the following sub-section [75].

Unfortunately, implementing such an optimal solution is computationally prohibitive. In re-
sponse a number of researchers have offered other solutions that have functioned well in
limited circumstances. Section (5.8.2) characterizes these alternative partial solutions.

5.8.1 The Stochastic Map technique

Figure 5.40 shows a general schematic incorporating map building and maintenance into the
standard localization loop depicted by Figure (5.29) during discussion of Kalman filter lo-
calization [9]. The added arcs represent the additional flow of information that occurs when
there is an imperfect match between observations and measurement predictions.

Unexpected observations will affect the creation of new features in the map whereas unob-
served measurement predictions will affect the removal of features from the map. As dis-
cussed earlier, each specific prediction or observation has an unknown exact value and so it
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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is represented by a distribution. The uncertainties of all of these quantities must be consid-
ered throughout this process.

The new type of map we are creating not only has features in it as did previous maps, but it
also has varying degrees of probability that each feature is indeed part of the environment.

We represent this new map M with a set n of probabilistic feature locations , each with the

covariance matrix and an associated credibility factor between 0 and 1 quantifying the

belief in the existence of the feature in the environment (see Fig. (5.41)):

(5.69)

In contrast to the map used for Kalman filter localization previously, the map M is not as-
sumed to be precisely known because it will be created by an uncertain robot over time. This

is why the features are described with associated covariance matrices .
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Fig 5.40 General schematic for concurrent localization and map building (see [9])
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Just as with Kalman filter localization, the matching step yields has three outcomes in regard
to measurement predictions and observations: matched prediction and observations, unex-
pected observations and unobserved predictions. Localization, or the position update of the
robot, proceeds as before. However, the map is also updated now, using all three outcomes
and complete propagation of all the correllated uncertainties (see [9] for more details).

An interesting variable is the credibility factor , which governs the likelihood that the

mapped feature is indeed in the environment. How should the robot’s failure to match ob-
served features to a particular map feature reduce that map feature’s credibility? And also,
how should the robot’s success at matching a mapped feature increase the chance that the
mapped feature is "correct?" In [9] the following function is proposed for calculating cred-
ibility:

(5.70)

where a and b define the learning and forgetting rate and ns and nu are the number of

matched and unobserved predictions up to time k, respectively. The update of the covari-

ance matrix can be done similarly to the position update seen in previous section. In map-

building the feature positions and the robot’s position are strongly correlated. This forces
us to use a stochastic map, in which all cross-correlations must be updated in each cycle [73,
74, 75].

The stochastic map consists of a stacked system state vector:

(5.71)

and a system state covariance matrix:
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(5.72)

where the index r stands for the robot and the index i = 1 to n for the features in the map.

In contrast to localization based on an a priori accurate map, in the case of a stochastic map
the cross-correlations must be maintained and updated as the robot is performing automatic
map-building. During each localization cycle, the cross-correlations robot-to-feature and
feature-to-robot are also updated. In short, this optimal approach requires every value in the
map to depend on every other value, and therein lies the reason that such a complete solution
to the automatic mapping problem is beyond the reach of even today’s computational re-
sources.

5.8.2 Other Mapping techniques

The mobile robotics research community has spent significant research effort on the prob-
lem of automatic mapping, and has demonstrating working systems in many environments
without having solved the complete stochastic map problem described earlier. This field of
mobile robotics research is extremely large, and this text will not present a comprehensive
survey of the field. Instead, we present below two key considerations associated with auto-
matic mapping, together with brief discussions of the approaches taken by several automatic
mapping solutions to overcome these challenges.

5.8.2.1 Cyclic environments

Possibly the single hardest challenge for automatic mapping to be conquered is to correctly
map cyclic environments. The problem is simple: given an environment that has one or
more loops or cycles (e.g. four hallways that intersect to form a rectangle), create a globally
consistent map for the whole environment.

This problem is hard because of the fundamental behavior of automatic mapping systems:
the maps they create are not perfect. And, given any local imperfection, accumulating such
imperfections over time can lead to arbitrarily large global errors between a map, at the mac-
ro level, and the real world, as shown in Figure (5.42). Such global error is usually irrelevant
for mobile robot localization and navigation. After all, a warped map will still serve the ro-
bot perfectly well so long as the local error is bounded. However, an extremely large loop
still eventually returns to the same spot, and the robot must be able to note this fact in its
map. Therefore, global error does indeed matter in the case of cycles.

In some of the earliest work attempting to solve the cyclic environment problem, [116] used
a purely topological representation of the environment, reasoning that the topological repre-
sentation only captures the most abstract, most important features and avoids a great deal of
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irrelevant detail. When the robot arrives at a topological node that could be the same as a
previously visited and mapped node (e.g. similar distinguishing features), then the robot
postulates that it has indeed returned to the same node. To check this hypothesis, the robot
explicitly plans and moves to adjacent nodes to see if its perceptual readings are consistent
with the cycle hypothesis.

With the recent popularity of metric maps such as fixed decomposition grid representations,
the cycle detection strategy is not as straightforward. Two important features are found in
most autonomous mapping systems that claim to solve the cycle detection problem. First,
as with many recent systems, these mobile robots tend to accumulate recent perceptual his-
tory to create small-scale local sub-maps [117, 118, 119]. Each sub-map is treated as a sin-
gle sensor during the robot’s position update. The advantage of this approach is two-fold.
Because odometry is relatively accurate over small distances, the relative registration of fea-
tures and raw sensor strikes in a local sub-map will be quite accurate. In addition to this, the
robot will have created a virtual sensor system with a significantly larger horizon than its
actual sensor system’s range. In a sense, this strategy at the very least defers the problem of
very large cyclic environments by increasing the map scale that can be handled well by the
robot.

The second recent technique for dealing with cycle environments is in fact a return to the
topological representation. Some recent automatic mapping systems will attempt to identify
cycles by associating a topology with the set of metric sub-maps, explicitly identifying the

Fig 5.42 Cyclic Environments: A naive, local mapping strategy with small local er-
ror leads to global maps that have a significant error, as demonstrated by
this real-world run on the left. By applying topological correction, the grid
map on the right is extracted [47].
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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loops first at the topological level. In the case of [118] for example, the topological level
loop is identified by a human who pushes a button at a known landmark position. In the case
of [119] the topological level loop is determined by performing correspondence tests be-
tween sub-maps, postulating that two sub-maps represent the same place in the environment
when the correspondence is good.

One could certainly imagine other augmentations based on known topological methods. For
example, the globally unique localization methods described in Section (5.7) could be used
to identify topological correctness. It is notable that the automatic mapping research of the
present has, in many ways, returned to the basic topological correctness question that was at
the heart of some of the earliest automatic mapping research in mobile robotics more than a
decade ago. Of course, unlike that early work, today’s automatic mapping results boast cor-
rect cycle detection combined with high-fidelity geometric maps of the environment.

5.8.2.2 Dynamic environments

A second challenge extends not just to existing automonous mapping solutions but even to
the basic formulation of the stochastic map approach. All of these strategies tend to assume
that the environment is either unchanging or changes in ways that are virtually insignificant.
Such assumptions are certainly valid with respect to some environments, such as for exam-
ple the computer science department of a university at 3:00 past midnight. However, in a
great many cases this assumption is incorrect. In the case of wide-open spaces that are pop-
ular gathering places for humans, there is rapid change in the freespace and a vast majority
of sensor strikes represent detection of the transient humans rather than fixed surfaces such
as the perimeter wall. Another class of dynamic environments are spaces such as factory
floors and warehouses, where the objects being stored redefine the topology of the pathways
on a day-to-day basis as shipments are moved in and out.

In all such dynamic environments, an automatic mapping system should capture the salient
objects detected by its sensors and, furthermore, the robot should have the flexibility to mod-
ify its map as the position of these salient objects changes. The subject of continuous map-
ping, or mapping of dynamic environments is to some degree a direct outgrowth of
successful strategies for automatic mapping of unfamiliar environments. For example, in

the case of stochastic mapping using the credibility factor mechanism, the credibility

equation can continue to provide feedback regarding the probability of existence of various
mapped features after the initial map creation process is ostensibly complete. Thus, a map-
ping system can become a map-modifying system by simply continuing to operate. This is
most effective, of course, if the mapping system is real-time and incremental. If map con-
struction requires off-line global optimization, then the desire to make small-grained, incre-
mental adjustments to the map is more difficult to satisfy.

Earlier we stated that a mapping system should capture only the salient objects detected by
its sensors. One common argument for handling the detection of, for instance, humans in

the environment is that mechanisms such as can take care of all features that did not de-

serve to be mapped in the first place. For example, in [117] the authors develop a system
based on a set of local occupany grids (called evidence grids) and a global occupancy grid.
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Each time the robot’s most recent local evidence grid is used to update a region of the global
occupancy grid, extraneous occupied cells in the global occupancy grid are freed if the local
occupancy grid detected no objects (with high confidence) at those same positions.

The general solution to the problem of detecting salient features, however, begs a solution
to the perception problem in general. When a robot’s sensor system can reliably detect the
difference between a wall and a human, using for example a vision system, then the problem
of mapping in dynamic environments will become significantly more straightforward.

We have discussed just two important considerations for automatic mapping. There is still
a great deal of research activity focusing on the general map building and localization prob-
lem [9, 6, 47, 48, 49, 50, 75, 77]. However, there are few groups working on the general
problem of probabilistic map building (i.e. stochastic maps) and, so far, a consistent and ab-
solutely general solution has yet to be found. This field is certain to produce significant new
results in the next several years, and as the perceptual power of robots improves we expect
the payoff to be greatest here.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5 Mobile Robot Localization

5.1 Introduction

Navigation is one of the most challenging competencies required of a mobile robot. Success
in navigation requires success at the four building blocks of navigation (fig. 5.2): percep-
tion- the robot must interpret its sensors to extract meaningful data; localization- the robot
must determine its position in the environment; cognition- the robot must decide how to act
to achieve its goals; and motion control- the robot must modulate its motor outputs to
achieve the desired trajectory.

Of these four components, localization has received the greatest research attention in the
past decade and, as a result, significant advances have been made on this front. In this chap-
ter, we will explore the successful localization methodologies of recent years. First, Section
5.2 describes how sensor and effector uncertainty is responsible for the difficulties of local-
ization. Then, Section 5.3 describes two extreme approaches to dealing with the challenge
of robot localization: avoiding localization altogether, and performing explicit map-based
localization. The remainder of the chapter discusses the question of representation, then pre-
sents case studies of successful localization systems using a variety of representations and
techniques to achieve mobile robot localization competence.

Fig 5.1 Where am I?

?
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Fig 5.2 General schematic for mobile robot localization.
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5.2 The Challenge of Localization: noise and aliasing

If one could attach an accurate GPS (Global Position System) sensor to a mobile robot, much
of the localization problem would be obviated. The GPS would inform the robot of its exact
position and orientation, indoors and outdoors, so that the answer to the question, "Where
am I?" would always be immediately available. Unfortunately, such a sensor is not currently
practical. The existing GPS network provides accuracy to within several meters, which is
unacceptable for localizing human-scale mobile robots as well as miniature mobile robots
such as desk robots and the body-navigating nano-robots of the future. Furthermore, GPS
technologies cannot function indoors or in obstructed areas and are thus limited in their
workspace.

But, looking beyond the limitations of GPS, localization implies more than knowing one’s
absolute position in the Earth’s reference frame. Consider a robot that is interacting with hu-
mans. This robot may need to identify its absolute position, but its relative position with re-
spect to target humans is equally important. Its localization task can include identifying
humans using its sensor array, then computing its relative position to the humans. Further-
more, during the Cognition step a robot will select a strategy for achieving its goals. If it in-
tends to reach a particular location, then localization may not be enough. The robot may
need to acquire or build an environmental model, a map, that aids it in planning a path to the
goal. Once again, localization means more than simply determining an absolute pose in
space; it means building a map, then identifying the robot’s position relative to that map.

Clearly, the robot’s sensors and effectors play an integral role in all the above forms of lo-
calization. It is because of the inaccuracy and incompleteness of these sensors and effectors
that localization poses difficult challenges. This section identifies important aspects of this
sensor and effector suboptimality.

5.2.1 Sensor Noise

Sensors are the fundamental robot input for the process of perception, and therefore the de-
gree to which sensors can discriminate world state is critical. Sensor noise induces a limi-
tation on the consistency of sensor readings in the same environmental state and, therefore,
on the number of useful bits available from each sensor reading. Often, the source of sensor
noise problems is that some environmental features are not captured by the robot’s represen-
tation and are thus overlooked.

For example, a vision system used for indoor navigation in an office building may use the
color values detected by its color CCD camera. When the sun is hidden by clouds, the illu-
mination of the building’s interior changes due to windows throughout the building. As a
result, hue values are not constant. The color CCD appears noisy from the robot’s perspec-
tive as if subject to random error, and the hue values obtained from the CCD camera will be
unusable, unless the robot is able to note the position of the Sun and clouds in its represen-
tation.

Illumination dependency is only one example of the apparent noise in a vision-based sensor
system. Picture jitter, signal gain, blooming and blurring are all additional sources of noise,
potentially reducing the useful content of a color video image.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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Consider the noise level (i.e. apparent random error) of ultrasonic range-measuring sensors
(e.g. sonars) as we discussed in Section 4.1.2.3. When a sonar transducer emits sound to-
wards a relatively smooth and angled surface, much of the signal will coherently reflect
away, failing to generate a return echo. Depending on the material characteristics, a small
amount of energy may return nonetheless. When this level is close to the gain threshold of
the sonar sensor, then the sonar will, at times, succeed and, at other times, fail to detect the
object. From the robot’s perspective, a virtually unchanged environmental state will result
in two different possible sonar readings: one short, and one long.

The poor signal to noise ratio of a sonar sensor is further confounded by interference be-
tween multiple sonar emitters. Often, research robots have between 12 to 48 sonars on a sin-
gle platform. In acoustically reflective environments, multipath interference is possible
between the sonar emissions of one tranducer and the echo detection circuitry of another
transducer. The result can be dramatically large errors (i.e. underestimation) in ranging val-
ues due to a set of coincidental angles. Such errors occur rarely, less than 1% of the time,
and are virtually random from the robot’s perspective.

In conclusion, sensor noise reduces the useful information content of sensor readings. Clear-
ly, the solution is to take multiple readings into account, employing temporal fusion or
multi-sensor fusion to increase the overall information content of the robot’s inputs.

5.2.2 Sensor Aliasing

A second shortcoming of mobile robot sensors causes them to yield little information con-
tent, further exacerbating the problem of perception and, thus, localization. The problem,
known as sensor aliasing, is a phenomenon that humans rarely encounter. The human sen-
sory system, particularly the visual system, tends to receive unique inputs in each unique lo-
cal state. In other words, every different place looks different. The power of this unique
mapping is only apparent when one considers situations where this fails to hold. Consider
moving through an unfamiliar building that is completely dark. When the visual system sees
only black, one’s localization system quickly degrades. Another useful example is that of a
human-sized maze made from tall hedges. Such mazes have been created for centuries, and
humans find them extremely difficult to solve without landmarks or clues because, without
visual uniqueness, human localization competence degrades rapidly.

In robots, the non-uniqueness of sensors readings, or sensor aliasing, is the norm and not the
exception. Consider a narrow-beam rangefinder such as ultrasonic or infrared rangefinders.
This sensor provides range information in a single direction without any additional data re-
garding material composition such as color, texture and hardness. Even for a robot with sev-
eral such sensors in an array, there are a variety of environmental states that would trigger
the same sensor values across the array. Formally, there is a many-to-one mapping from en-
vironmental states to the robot’s perceptual inputs. Thus, the robot’s percepts cannot distin-
guish from among these many states. A classical problem with sonar-based robots involves
distinguishing between humans and inanimate objects in an indoor setting. When facing an
apparent obstacle in front of itself, should the robot say "Excuse me" because the obstacle
may be a moving human, or should the robot plan a path around the object because it may
be a cardboard box? With sonar alone, these states are aliased and differentiation is impos-
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sible.

The problem posed to navigation because of sensor aliasing is that, even with noise-free sen-
sors, the amount of information is generally insufficient to identify the robot’s position from
a single percept reading. Thus techniques must be employed by the robot programmer that
base the robot’s localization on a series of readings and, thus, sufficient information to re-
cover the robot’s position over time.

5.2.3 Effector Noise

The challenges of localization do not lie with sensor technologies alone. Just as robot sen-
sors are noisy, limiting the information content of the signal, so robot effectors are also
noisy. In particular, a single action taken by a mobile robot may have several different pos-
sible results, even though from the robot’s point of view the initial state before the action
was taken is well-known.

In short, mobile robot effectors introduce uncertainty about future state. Therefore the sim-
ple act of moving tends to increase the uncertainty of a mobile robot. There are, of course,
exceptions. Using cognition, the motion can be carefully planned so as to minimize this ef-
fect, and indeed sometimes to actually result in more certainty. Furthermore, when the robot
actions are taken in concert with careful interpretation of sensory feedback, it can compen-
sate for the uncertainty introduced by noisy actions using the information provided by the
sensors.

First, however, it is important to understand the precise nature of the effector noise that im-
pacts mobile robots. It is important to note that, from the robot’s point of view, this error in
motion is viewed as error in odometry, or the robot’s inability to estimate its own position
over time using knowledge of its kinematics and dynamics. The true source of error gener-
ally lies in an incomplete model of the environment. For instance, the robot does not model
the fact that the floor may be sloped, the wheels may slip, and a human may push the robot.
All of these un-modeled sources of error result in inaccuracy between the physical motion
of the robot, the intended motion of the robot and the proprioceptive sensor estimates of mo-
tion.

In odometry (wheel sensors only) and dead reckoning (also heading sensors) the position up-
date is based on proprioceptive sensors. The movement of the robot, sensed with wheel en-
coders and /or heading sensors is integrated to compute position. Because the sensor
measurement errors are integrated, the position error accumulates over time. Thus the posi-
tion has to be updated from time to time by other localization mechanisms. Otherwise the
robot is not able to maintain a meaningful position estimate in long run.

In the following we will concentrate on odometry based on the wheel sensor readings of a
differential drive robot only (see also [3, 40, 41]). Using additional heading sensors (e.g. gy-
roscope) can help to reduce the cumulative errors, but the main problems remain the same.

There are many sources of odometric error, from environmental factors to resolution:

• Limited resolution during integration (time increments, measurement resolution,
etc.)

• Misalignment of the wheels (deterministic)
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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• Unequal wheel diameter (deterministic)

• Variation in the contact point of the wheel

• Unequal floor contact (slipping, non-planar surface, etc.)

Some of the errors might be deterministic (systematic), thus they can be eliminated by prop-
er calibration of the system. However, there are still a number of non-deterministic (ran-
dom) errors which remain, leading to uncertainties in position estimation over time. From a
geometric point of view one can classify the errors into three types:

• Range error: integrated path length (distance) of the robots movement
-> sum of the wheel movements

• Turn error: similar to range error, but for turns
-> difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribute to the overall position error is nonlinear. Consider a robot, whose position is initially
perfectly well-known, moving forward in a straight line along the x axis. The error in the y-

position introduced by a move of d meters will have a component of , which can be

quite large as the angular error ∆θ grows. Over time, as a mobile robot moves about the en-
vironment, the rotational error between its internal reference frame and its original reference
frame grows quickly. As the robot moves away from the origin of these reference frames,
the resulting linear error in position grows quite large. It is instructive to establish an error
model for odometric accuracy and see how the errors propagate over time.

5.2.4 An Error Model for Odometric Position Estimation

Generally the pose (position) of a robot is represented by the vector

. (5.1)

For a differential drive robot the position can be estimated starting from a known position
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Fig 5.3 Movement of a differential drive robot
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by integrating the movement (summing the incremental travel distances). For a discrete sys-

tem with a fixed sampling interval ∆t the incremental travel distances are:

(5.2)

(5.3)

(5.4)

(5.5)

where:

: Path traveled in the last sampling interval

: Traveled distances for right and left wheel respectively

: Distance between the two wheels of differential drive robot

Thus we get the updated position p’:

(5.6)

By using the relation for of equations (5.4) and (5.5) we further obtain the basic

equation for odometric position update (for differential drive robots):

(5.7)

As we discussed earlier, odometric position updates can give only a very rough estimate of
the actual position. Due to integration errors of the uncertainties of p and the motion errors

during the incremental motion the position error based on odometry integration

grows with time.

In the next step we will establish an error model for the integrated position p’ to obtain the

covariance matrix of the odometric position estimate. To do so, we assume that at the
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starting point the initial covariance matrix is known. For the motion increment

we assume the following covariance matrix :

(5.8)

where and are the distances travelled by each wheel, and , are error constants

representing the non-deterministic parameters of the motor drive and the wheel-floor inter-
action. As you can see in equation (5.8) we made the following assumption:

• The two errors of the individually driven wheels are independent1

• The errors are proportional to the absolute value of the traveled distances .

These assumptions, while not perfect, are suitable and will thus be used for the further de-
velopment of the error model. The motion errors are due to unprecise movement because of
deformation of wheel, slippage, unequal floor, errors in encoders, et cetera. The values for

the error constants and depend on the robot and the environment and should be exper-

imentally established by performing and analyzing representative movements.

If we assume that p and are uncorrelated and the derivation of f (equ. (5.7))

is reasonably approximated by the first order Taylor expansion (linearization) we conclude,
using the error propagation law (see section 4.2.3):

(5.9)

The covariance matrix is, of course, always given by the of the previous step, and

can thus be calculated after specifying an initial value (e.g. 0).

Using equation (5.7) we can develop the two Jacobians and :

(5.10)

1. If there is more knowledge regarding the actual robot kinematics, the correlation terms of the covariance matrix
could also be used.
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(5.11)

The details for arriving at equation (5.11) are:

(5.12)

(5.13)

and with

; (5.14)

; ; ; (5.15)

we obtain equation (5.11).

Figures 5.4 and 5.5 show typical examples of how the position errors grow with time. The
results have been computed using the error model presented above.

Once the error model has been established, the error parameters must be specified. One can
compensate for deterministic errors properly calibrating the robot. However the error pa-
rameters specifying the non-deterministic errors can only be quantified by statistical (repet-
itive) measurements. A detailed discussion of odometric errors and a method for calibration
and quantification of deterministic and non-deterministic errors can be found in [4].
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Fig 5.4 Growth of the pose uncertainty for straight line movement: Note that the un-
certainty in y grows much faster than in the direction of movement. This re-
sults from the integration of the uncertainty about the robot’s orientation.
The ellipses drawn around the robot positions represent the uncertainties in
the x,y direction (e.g. ). The uncertainty of the orientation is not rep-
resented in the picture although its effect can be indirectly observed.

3σ θ

0 0.5 1

-0.4

-0.2

0

0.2

0.4

Error Propagation in Odometry

x [m]

y 
[m

]

Fig 5.5 Growth of the pose uncertainty for circular movement (r=const): Again, the
uncertainty perpendicular to the movement grows much faster than that in
the direction of movement. Note that the main axis of the uncertainty ellipsis
does not remain perpendicular to the direction of movement.
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5.3 To Localize or Not to Localize: localization-based nav-

igation versus programmed solutions

Figure 5.6 depicts a standard indoor environment that a mobile robot navigates. Suppose
that the mobile robot in question must deliver messages between two specific rooms in this
environment: rooms A and B. In creating a navigation system, it is clear that the mobile ro-
bot will need sensors and a motion control system. Sensors are absolutely required to avoid
hitting moving obstacles such as humans, and some motion control system is required so that
the robot can deliberately move.

It is less evident, however, whether or not this mobile robot will require a localization sys-
tem. Localization may seem mandatory in order to successfully navigate between the two
rooms. It is through localizing on a map, after all, that the robot can hope to recover its po-
sition and detect when it has arrived at the goal location. It is true that, at the least, the robot
must have a way of detecting the goal location. However, explicit localization with refer-
ence to a map is not the only strategy that qualifies as a goal detector.

An alternative, espoused by the behavior-based community, suggests that, since sensors and
effectors are noisy and information-limited, one should avoid creating a geometric map for
localization. Instead, this community suggests designing sets of behaviors that together re-
sult in the desired robot motion. Fundamentally, this approach avoids explicit reasoning
about localization and position, and thus generally avoids explicit path planning as well.

This technique is based on a belief that there exists a procedural solution to the particular
navigation problem at hand. For example, in Fig. 5.6, the behavioralist approach to navigat-
ing from Room A to Room B might be to design a left-wall-following behavior and a detec-
tor for Room B that is triggered by some unique queue in Room B, such as the color of the
carpet. Then, the robot can reach Room B by engaging the left wall follower with the Room
B detector as the termination condition for the program.

The architecture of this solution to a specific navigation problem is shown in figure 5.7. The
key advantage of this method is that, when possible, it may be implemented very quickly for
a single environment with a small number of goal positions. It suffers from some disadvan-

Fig 5.6 A Sample Environment

A

B

R. Siegwart, EPFL, Illah Nourbakhsh, CMU



170 Autonomous Mobile Robots
tages, however. First, the method does not directly scale to other environments or to larger
environments. Often, the navigation code is location-specific, and the same degree of cod-
ing and debugging is required to move the robot to a new environment.

Second, the underlying procedures, such as left-wall-follow, must be carefully designed to
produce the desired behavior. This task may be time-consuming and is heavily dependent
on the specific robot hardware and environmental characteristics.

Third, a behavior-based system may have multiple active behaviors at any one time. Even
when individual behaviors are tuned to optimize performance, this fusion and rapid switch-
ing between multiple behaviors can negate that fine-tuning. Often, the addition of each new
incremental behavior forces the robot designer to re-tune all of the existing behaviors again
to ensure that the new interactions with the freshly introduced behavior are all stable.

In contrast to the behavior-based approach, the map-based approach includes both localiza-
tion and cognition modules (see Fig. 5.8). In map-based navigation, the robot explicitly at-
tempts to localize by collecting sensor data, then updating some belief about its position with
respect to a map of the environment. The key advantages of the map-based approach for
navigation are as follows:

• The explicit, map-based concept of position makes the system’s belief about position
transparently available to the human operators.

• The existence of the map itself represents a medium for communication between hu-
man and robot: the human can simply give the robot a new map if the robot goes to

Fig 5.7 An Architecture for Behavior-based Navigation
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a new environment.

• The map, if created by the robot, can be used by humans as well, achieving two uses.

The map-based approach will require more up-front development effort to create a navigat-
ing mobile robot. The hope is that the development effort results in an architecture that can
successfully map and navigate a variety of environments, thereby amortizing the up-front
design cost over time.

Of course the key risk of the map-based approach is that an internal representation, rather
than the real world itself, is being constructed and trusted by the robot. If that model diverg-
es from reality (i.e. if the map is wrong), then the robot’s behavior may be undesirable, even
if the raw sensor values of the robot are only transiently incorrect.

In the remainder of this chapter, we focus on a discussion of map-based approaches and, spe-
cifically, the localization component of these techniques. These approaches are particularly
appropriate for study given their significant recent successes in enabling mobile robots to
navigate a variety of environments, from academic research buildings to factory floors and
museums around the world.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.4 Belief Representation

The fundamental issue that differentiates various map-based localization systems is the issue
of representation. There are two specific concepts that the robot must represent, and each
has its own unique possible solutions. The robot must have a representation (a model) of
the environment, or a map. What aspects of the environment are contained in this map? At
what level of fidelity does the map represent the environment? These are the design ques-
tions for map representation.

The robot must also have a representation of its belief regarding its position on the map.
Does the robot identify a single unique position as its current position, or does it describe its
position in terms of a set of possible positions? If multiple possible positions are expressed
in a single belief, how are those multiple positions ranked, if at all? These are the design
questions for belief representation.

Decisions along these two design axes can result in varying levels of architectural complex-
ity, computational complexity and overall localization accuracy. We begin by discussing
belief representation. The first major branch in a taxonomy of belief representation systems
differentiates between single hypothesis and multiple hypothesis belief systems. The former
covers solutions in which the robot postulates its unique position, whereas the latter enables
a mobile robot to describe the degree to which it is uncertain about its position. A sampling
of different belief and map representations is shown in figure 5.9.

5.4.1 Single Hypothesis Belief

The single hypothesis belief representation is the most direct possible postulation of mobile
robot position. Given some environmental map, the robot’s belief about position is ex-
pressed as a single unique point on the map. In Fig. 5.10, three examples of a single hypoth-
esis belief are shown using three different map representations of the same actual
environment (fig. 5.10a). In 5.10b, a single point is geometrically annotated as the robot’s
position in a continuous two-dimensional geometric map. In 5.10c, the map is a discrete,
tessellated map, and the position is noted at the same level of fidelity as the map cell size.
In 5.10d, the map is not geometrical at all but abstract and topological. In this case, the sin-
gle hypothesis of position involves identifying a single node i in the topological graph as the
robot’s position.

The principal advantage of the single hypothesis representation of position stems from the
fact that, given a unique belief, there is no position ambiguity. The unambiguous nature of
this representation facilitates decision-making at the robot’s cognitive level (e.g. path plan-
ning). The robot can simply assume that its belief is correct, and can then select its future
actions based on its unique position.

Just as decision-making is facilitated by a single-position hypothesis, so updating the robot’s
belief regarding position is also facilitated, since the single position must be updated by def-
inition to a new, single position. The challenge with this position update approach, which
ultimately is the principal disadvantage of single-hypothesis representation, is that robot
motion often induces uncertainty due to effectory and sensory noise. Therefore, forcing the
position update process to always generate a single hypothesis of position is challenging
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and, often, impossible.

5.4.2 Multiple Hypothesis Belief

In the case of multiple hypothesis beliefs regarding position, the robot tracks not just a single
possible position but a possibly infinite set of positions.

In one simple example originating in the work of Jean-Claude Latombe [5, 89], the robot’s
position is described in terms of a convex polygon positioned in a two-dimensional map of
the environment. This multiple hypothesis representation communicates the set of possible
robot positions geometrically, with no preference ordering over the positions. Each point in

Fig 5.9 Belief representation regarding the robot position (1 dimensional) in con-
tinuous and discretized (tessellated) maps.
a)Continuous map with multiple hypothesis belief, e.g. single Gaussian cen-
tered at a single continuous value
b)Continuous map with multiple hypothesis belief, e.g. multiple Gaussians
centered at multiple continuous values
c)Discretized (decomposed) grid map with probability values for all possi-
ble robot position, e.g. Markov approach
d)Discretized topological map with probability value for all possible nodes
(topological robot positions), e.g. Markov approach
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the map is simply either contained by the polygon and, therefore, in the robot’s belief set, or
outside the polygon and thereby excluded. Mathematically, the position polygon serves to
partition the space of possible robot positions. Such a polygonal representation of the mul-
tiple hypothesis belief can apply to a continuous, geometric map of the environment or, al-
ternatively, to a tessellated, discrete approximation to the continuous environment.

It may be useful, however, to incorporate some ordering on the possible robot positions, cap-
turing the fact that some robot positions are likelier than others. A strategy for representing
a continuous multiple hypothesis belief state along with a preference ordering over possible
positions is to model the belief as a mathematical distribution. For example, [42,47] notate
the robot’s position belief using an {X,Y} point in the two-dimensional environment as the

mean plus a standard deviation parameter , thereby defining a Gaussian distribution.

The intended interpretation is that the distribution at each position represents the probability

Fig 5.10 Three examples of single hypotheses of position using different map repre-
sentation.
a) real map with walls, doors and furniture
b) line-based map

-> around 100 lines with two parameters
c) occupancy grid based map

-> around 3000 gird cells sizing 50x50 cm
d) topological map using line features (Z/S-lines) and doors

-> around 50 features and 18 nodes
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assigned to the robot being at that location. This representation is particularly amenable to
mathematically defined tracking functions, such as the Kalman Filter, that are designed to
operate efficiently on Gaussian distributions.

An alternative is to represent the set of possible robot positions, not using a single Gaussian
probability density function, but using discrete markers for each possible position. In this
case, each possible robot position is individually noted along with a confidence or probabil-
ity parameter (See Fig. (5.11)). In the case of a highly tessellated map this can result in thou-
sands or even tens of thousands of possible robot positions in a single belief state.

The key advantage of the multiple hypothesis representation is that the robot can explicitly
maintain uncertainty regarding its position. If the robot only acquires partial information re-
garding position from its sensors and effectors, that information can conceptually be incor-
porated in an updated belief.

A more subtle advantage of this approach revolves around the robot’s ability to explicitly
measure its own degree of uncertainty regarding position. This advantage is the key to a
class of localization and navigation solutions in which the robot not only reasons about
reaching a particular goal, but reasons about the future trajectory of its own belief state. For
instance, a robot may choose paths that minimize its future position uncertainty. An exam-
ple of this approach is [90], in which the robot plans a path from point A to B that takes it
near a series of landmarks in order to mitigate localization difficulties. This type of explicit
reasoning about the effect that trajectories will have on the quality of localization requires a
multiple hypothesis representation.

One of the fundamental disadvantages of the multiple hypothesis approaches involves deci-
sion-making. If the robot represents its position as a region or set of possible positions, then
how shall it decide what to do next? Figure 5.11 provides an example. At position 3, the
robot’s belief state is distributed among 5 hallways separately. If the goal of the robot is to
travel down one particular hallway, then given this belief state what action should the robot
choose?

The challenge occurs because some of the robot’s possible positions imply a motion trajec-

Fig 5.11 Example of multiple hypothesis tracking (courtesy of W. Burgard [43]). The
belief state that is largely distributed becomes very certain after moving to
position 4

Belief states at positions 2, 3 and 4Path of the robot
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tory that is inconsistent with some of its other possible positions. One approach that we will
see in the case studies below is to assume, for decision-making purposes, that the robot is
physically at the most probable location in its belief state, then to choose a path based on
that current position. But this approach demands that each possible position have an asso-
ciated probability.

In general, the right approach to such a decision-making problems would be to decide on
trajectories that eliminate the ambiguity explicitly. But this leads us to the second major dis-
advantage of the multiple hypothesis approaches. In the most general case, they can be com-
putationally very expensive. When one reasons in a three dimensional space of discrete
possible positions, the number of possible belief states in the single hypothesis case is lim-
ited to the number of possible positions in the 3D world. Consider this number to be N.
When one moves to an arbitrary multiple hypothesis representation, then the number of pos-

sible belief states is the power set of N, which is far larger: . Thus explicit reasoning

about the possible trajectory of the belief state over time quickly becomes computationally
untenable as the size of the environment grows.

There are, however, specific forms of multiple hypothesis representations that are somewhat
more constrained, thereby avoiding the computational explosion while allowing a limited
type of multiple hypothesis belief. For example, if one assumes a Gaussian distribution of
probability centered at a single position, then the problem of representation and tracking of
belief becomes equivalent to Kalman Filtering, a straightforward mathematical process de-
scribed below. Alternatively, a highly tessellated map representation combined with a limit
of 10 possible positions in the belief state, results in a discrete update cycle that is, at worst,
only 10x more computationally expensive than single hypothesis belief update.

In conclusion, the most critical benefit of the multiple hypothesis belief state is the ability to
maintain a sense of position while explicitly annotating the robot’s uncertainty about its own
position. This powerful representation has enabled robots with limited sensory information
to navigate robustly in an array of environments, as we shall see in the case studies below.

2
N
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5.5 Map Representation

The problem of representing the environment in which the robot moves is a dual of the prob-
lem of representing the robot’s possible position or positions. Decisions made regarding the
environmental representation can have impact on the choices available for robot position
representation. Often the fidelity of the position representation is bounded by the fidelity of
the map.

Three fundamental relationships must be understood when choosing a particular map repre-
sentation:

• The precision of the map must appropriately match the precision with which the ro-
bot needs to achieve its goals.

• The precision of the map and the type of features represented must match the preci-
sion and data types returned by the robot’s sensors.

• The complexity of the map representation has direct impact on the computational
complexity of reasoning about mapping, localization and navigation.

In the following sections, we identify and discuss critical design choices in creating a map
representation. Each such choice has great impact on the relationships listed above and on
the resulting robot localization architecture. As we will see, the choice of possible map rep-
resentations is broad. Selecting an appropriate representation requires understanding all of
the trade-offs inherent in that choice as well as understanding the specific context in which
a particular mobile robot implementation must perform localization. In general, the environ-
ment representation and model can be roughly classified as presented in chapter 4.3.

5.5.1 Continuous Representations

A continuous-valued map is one method for exact decomposition of the environment. The
position of environmental features can be annoted precisely in continuous space. Mobile ro-
bot implementations to date use continuous maps only in two dimensional representations,
as further dimensionality can result in computational explosion.

A common approach is to combine the exactness of a continuous representation with the
compactness of the closed world assumption. This means that one assumes that the repre-
sentation will specify all environmental objects in the map, and that any area in the map that
is devoid of objects has no objects in the corresponding portion of the environment. Thus,
the total storage needed in the map is proportional to the density of objects in the environ-
ment, and a sparse environment can be represented by a low-memory map.

One example of such a representation, shown in Figure 5.12, is a 2D representation in which
polygons represent all obstacles in a continuos-valued coordinate space. This is similar to
the method used by Latombe [5, 113] and others to represent environments for mobile robot
path planning techniques.

In the case of [5, 113], most of the experiments are in fact simulations run exclusively within
the computer’s memory. Therefore, no real effort would have been expended to attempt to
use sets of polygons to describe a real-world environment, such as a park or office building.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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In other work in which real environments must be captured by the maps, one sees a trend
toward selectivity and abstraction. The human map-maker tends to capture on the map, for
localization purposes, only objects that can be detected by the robot’s sensors and, further-
more, only a subset of the features of real-world objects.

It should be immediately apparent that geometric maps can capably represent the physical
locations of objects without referring to their texture, color, elasticity, or any other such sec-
ondary features that do not related directly to position and space. In addition to this level of
simplification, a mobile robot map can further reduce memory usage by capturing only as-
pects of object geometry that are immediately relevant to localization. For example all ob-
jects may be approximated using very simple convex polygons, sacrificing map felicity for
the sake of computational speed.

One excellent example involves line extraction. Many indoor mobile robots rely upon laser
rangefinding devices to recover distance readings to nearby objects. Such robots can auto-
matically extract best-fit lines from the dense range data provided by thousands of points of
laser strikes. Given such a line extraction sensor, an appropriate continuous mapping ap-
proach is to populate the map with a set of infinite lines. The continuous nature of the map
guarantees that lines can be positioned at arbitrary positions in the plane and at arbitrary an-
gles. The abstraction of real environmental objects such as walls and intersections captures
only the information in the map representation that matches the type of information recov-
ered by the mobile robot’s rangefinding sensor.

Figure 5.13 shows a map of an indoor environment at EPFL using a continuous line repre-

Fig 5.12 A continous representation using polygons as environmental obstacles
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sentation. Note that the only environmental features captured by the map are straight lines,
such as those found at corners and along walls. This represents not only a sampling of the
real world of richer features, but also a simplification, for an actual wall may have texture
and relief that is not captured by the mapped line.

The impact of continuos map representations on position representation is primarily posi-
tive. In the case of single hypothesis position representation, that position may be specified
as any continuous-valued point in the coordinate space, and therefore extremely high accu-
racy is possible. In the case of multiple hypothesis position representation, the continuous
map enables two types of multiple position representation.

In one case, the possible robot position may be depicted as a geometric shape in the hyper-
plane, such that the robot is known to be within the bounds of that shape. This is shown in
Figure 5.30, in which the position of the robot is depicted by an oval bounding area.

Yet, the continuous representation does not disallow representation of position in the form
of a discrete set of possible positions. For instance, in [111] the robot position belief state
is captured by sampling nine continuous-valued positions from within a region near the ro-
bot’s best known position. This algorithm captures, within a continuous space, a discrete
sampling of possible robot positions.

In summary, the key advantage of a continuous map representation is the potential for high
accuracy and expressiveness with respect to the environmental configuration as well as the
robot position within that environment. The danger of a continuous representation is that
the map may be computationally costly. But this danger can be tempered by employing ab-
straction and capturing only the most relevant environmental features. Together with the
use of the closed world assumption, these techniques can enable a continuous-valued map
to be no more costly, and sometimes even less costly, than a standard discrete representation.

5.5.2 Decomposition Strategies

In the section above, we discussed one method of simplification, in which the continuous
map representation contains a set of infinite lines that approximate real-world environmental
lines based on a two-dimensional slice of the world. Basically this transformation from the
real world to the map representation is a filter that removes all non-straight data and further-
more extends line segment data into infinite lines that require fewer parameters.

Fig 5.13 Example of a continuous-valued line representation of EPFL.
left: real map
right: representation with a set of infinite lines
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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A more dramatic form of simplification is abstraction: a general decomposition and selec-
tion of environmental features. In this section, we explore decomposition as applied in its
more extreme forms to the question of map representation.

Why would one radically decompose the real environment during the design of a map rep-
resentation? The immediate disadvantage of decomposition and abstraction is the loss of
fidelity between the map and the real world. Both qualitatively, in terms of overall structure,
and quantitatively, in terms of geometric precision, a highly abstract map does not compare
favorably to a high-fidelity map.

Despite this disadvantage, decomposition and abstraction may be useful if the abstraction
can be planned carefully so as to capture the relevant, useful features of the world while dis-
carding all other features. The advantage of this approach is that the map representation can
potentially be minimized. Furthermore, if the decomposition is hierarchical, such as in a
pyramid of recursive abstraction, then reasoning and planning with respect to the map rep-
resentation may be computationally far superior to planning in a fully detailed world model.

A standard, lossless form of opportunistic decomposition is termed exact cell decomposi-
tion. This method, introduced by [5], achieves decomposition by selecting boundaries be-
tween discrete cells based on geometric criticality.

Figure 5.14 depicts an exact decomposition of a planar workspace populated by polygonal
obstacles. The map representation tessellates the space into areas of free space. The repre-
sentation can be extremely compact because each such area is actually stored as a single
node, shown in the graph at the bottom of Figure 5.14.

The underlying assumption behind this decomposition is that the particular position of a ro-

Fig 5.14 Example of exact cell
decomposition.
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bot within each area of free space does not matter. What matters is the robot’s ability to
traverse from each area of free space to the adjacent areas. Therefore, as with other repre-
sentations we will see, the resulting graph captures the adjacency of map locales. If indeed
the assumptions are valid and the robot does not care about its precise position within a sin-
gle area, then this can be an effective representation that nonetheless captures the connec-
tivity of the environment.

Such an exact decomposition is not always appropriate. Exact decomposition is a function
of the particular environment obstacles and free space. If this information is expensive to
collect or even unknown, then such an approach is not feasible.

An alternative is fixed decomposition, in which the world is tessellated, transforming the
continuos real environment into a discrete approximation for the map. Such a transforma-
tion is demonstrated in Figure 5.15, which depicts what happens to obstacle-filled and free
areas during this transformation. The key disadvantage of this approach stems from its in-
exact nature. It is possible for narrow passageways to be lost during such a transformation,
as shown in Figure 5.15. Formally this means that fixed decomposition is sound but not
complete. Yet another approach is adaptive cell decomposition as presented in Figure 5.16.

The concept of fixed decomposition is extremely popular in mobile robotics; it is perhaps
the single most common map representation technique currently utilized. One very popular

Fig 5.15 Fixed decomposition of the same space. (narrow passage disappears)
R. Siegwart, EPFL, Illah Nourbakhsh, CMU



182 Autonomous Mobile Robots
version of fixed decomposition is known as the occupancy grid representation [91]. In an
occupancy grid, the environment is represented by a discrete grid, where each cell is either
filled (part of an obstacle) or empty (part of free space). This method is of particular value
when a robot is equipped with range-based sensors because the range values of each sensor,
combined with the absolute position of the robot, can be used directly to update the filled/
empty value of each cell.

In the occupancy grid, each cell may have a counter, whereby the value 0 indicates that the
cell has not been "hit" by any ranging measurements and, therefore, it is likely free space.
As the number of ranging strikes increases, the cell’s value is incremented and, above a cer-
tain threshold, the cell is deemed to be an obstacle. By discounting the values of cells over
time, both hysteresis and the possibility of transient obstacles can be represented using this
occupancy grid approach. Figure 5.17 depicts an occupancy grid representation in which
the darkness of each cell is proportional to the value of its counter. One commercial robot
that uses a standard occupancy grid for mapping and navigation is the Cye robot [112].

Fig 5.16 Example of adaptive decomposition of an environment.

Fig 5.17 Example of an occupancy grid map representation.
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There remain two main disadvantages of the occupancy grid approach. First, the size of the
map in robot memory grows with the size of the environment and, if a small cell size is used,
this size can quickly become untenable. This occupancy grid approach is not compatible
with the closed world assumption, which enabled continuous representations to have poten-
tially very small memory requirements in large, sparse environments. In contrast, the occu-
pancy grid must have memory set aside for every cell in the matrix. Furthermore, any fixed
decomposition method such as this imposes a geometric grid on the world a priori, regard-
less of the environmental details. This can be inappropriate in cases where geometry is not
the most salient feature of the environment.

For these reasons, an alternative, called topological decomposition, has been the subject of
some exploration in mobile robotics. Topological approaches avoid direct measurement of
geometric environmental qualities, instead concentrating on characteristics of the environ-
ment that are most relevant to the robot for localization.

Formally, a topological representation is a graph that specifies two things: nodes and the
connectivity between those nodes. Insofar as a topological representation is intended for the
use of a mobile robot, nodes are used to denote areas in the world and arcs are used to denote
adjacency of pairs of nodes. When an arc connects two nodes, then the robot can traverse
from one node to the other without requiring traversal of any other intermediary node.

Adjacency is clearly at the heart of the topological approach, just as adjacency in a cell de-
composition representation maps to geometric adjacency in the real world. However, the
topological approach diverges in that the nodes are not of fixed size nor even specifications
of free space. Instead, nodes document an area based on any sensor discriminant such that
the robot can recognize entry and exit of the node.

Figure 5.18 depicts a topological representation of a set of hallways and offices in an indoor

Fig 5.18 A topological representation of an indoor office area.
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environment. In this case, the robot is assumed to have an intersection detector, perhaps us-
ing sonar and vision to find intersections between halls and between halls and rooms. Note
that nodes capture geometric space and arcs in this representation simply represent connec-
tivity.

Another example of topological representation is the work of Dudek [49], in which the goal
is to create a mobile robot that can capture the most interesting aspects of an area for human
consumption. The nodes in Dudek’s representation are visually striking locales rather than
route intersections.

In order to navigate using a topological map robustly, a robot must satisfy two constraints.
First, it must have a means for detecting its current position in terms of the nodes of the to-
pological graph. Second, it must have a means for traveling between nodes using robot mo-
tion. The node sizes and particular dimensions must be optimized to match the sensory
discrimination of the mobile robot hardware. This ability to "tune" the representation to the
robot’s particular sensors can be an important advantage of the topological approach. How-
ever, as the map representation drifts further away from true geometry, the expressiveness
of the representation for accurately and precisely describing a robot position is lost. Therein
lies the compromise between the discrete cell-based map representations and the topological
representations. Interestingly, the continuous map representation has the potential to be
both compact like a topological representation and precise as with all direct geometric rep-
resentations.

Yet, a chief motivation of the topological approach is that the environment may contain im-
portant non-geometric features - features that have no ranging relevance but are useful for
localization. In Chapter 4 we described such whole-image vision-based features.

In contrast to these whole-image feature extractors, often spatially localized landmarks are
artificially placed in an environment to impose a particular visual-topological connectivity
upon the environment. In effect, the artificial landmark can impose artificial structure. Ex-
amples of working systems operating with this landmark-based strategy have also demon-
strated success. Latombe’s landmark-based navigation research [89] has been implemented
on real-world indoor mobile robots that employ paper landmarks attached to the ceiling as
the locally observable features. Chips the museum robot is another robot that uses man-
made landmarks to obviate the localization problem. In this case, a bright pink square serves
as a landmark with dimensions and color signature that would be hard to accidentally repro-
duce in a museum environment [88]. One such museum landmark is shown in Figure (5.19).

In summary, range is clearly not the only measurable and useful environmental value for a
mobile robot. This is particularly true due to the advent of color vision as well as laser
rangefinding, which provides reflectance information in addition to range information.
Choosing a map representation for a particular mobile robot requires first understanding the
sensors available on the mobile robot and second understanding the mobile robot’s function-
al requirements (e.g. required goal precision and accuracy).

5.5.3 State of the Art: Current Challenges in Map Representation

The sections above describe major design decisions in regards to map representation choic-
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es. There are, however, fundamental real-world features that mobile robot map representa-
tions do not yet represent well. These continue to be the subject of open research, and
several such challenges are described below.

The real world is dynamic. As mobile robots come to inhabit the same spaces as humans,
they will encounter moving people, cars, strollers and the transient obstacles placed and
moved by humans as they go about their activities. This is particularly true when one con-
siders the home environment with which domestic robots will someday need to contend.

The map representations described above do not, in general, have explicit facilities for iden-
tifying and distinguishing between permanent obstacles (e.g. walls, doorways, etc.) and
transient obstacles (e.g. humans, shipping packages, etc.). The current state of the art in
terms of mobile robot sensors is partly to blame for this shortcoming. Although vision re-
search is rapidly advancing, robust sensors that discriminate between moving animals and
static structures from a moving reference frame are not yet available. Furthermore, estimat-
ing the motion vector of transient objects remains a research problem.

Usually, the assumption behind the above map representations is that all objects on the map
are effectively static. Partial success can be achieved by discounting mapped objects over
time. For example, occupancy grid techniques can be more robust to dynamic settings by
introducing temporal discounting, effectively treating transient obstacles as noise. The more
challenging process of map creation is particularly fragile to environment dynamics; most
mapping techniques generally require that the environment be free of moving objects during
the mapping process. One exception to this limitation involves topological representations.
Because precise geometry is not important, transient objects have little effect on the map-
ping or localization process, subject to the critical constraint that the transient objects must
not change the topological connectivity of the environment. Still, neither the occupancy grid
representation nor a topological approach is actively recognizing and representing transient

Fig 5.19 An artificial landmark used by Chips during autonomous docking.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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objects as distinct from both sensor error and permanent map features.

As vision sensing provides more robust and more informative content regarding the tran-
sience and motion details of objects in the world, mobile roboticists will in time propose rep-
resentations that make use of that information. A classic example involves occlusion by
human crowds. Museum tour guide robots generally suffer from an extreme amount of oc-
clusion. If the robot’s sensing suite is located along the robot’s body, then the robot is ef-
fectively blind when a group of human visitors completely surrounds the robot. This is
because its map contains only environment features that are, at that point, fully hidden from
the robot’s sensors by the wall of people. In the best case, the robot should recognize its
occlusion and make no effort to localize using these invalid sensor readings. In the worst
case, the robot will localize with the fully occluded data, and will update its location incor-
rectly. A vision sensor that can discriminate the local conditions of the robot (e.g. we are
surrounded by people) can help eliminate this error mode.

A second open challenge in mobile robot localization involves the traversal of open spaces.
Existing localization techniques generally depend on local measures such as range, thereby
demanding environments that are somewhat densely filled with objects that the sensors can
detect and measure. Wide open spaces such as parking lots, fields of grass and indoor atri-
ums such as those found in convention centers pose a difficulty for such systems due to their
relative sparseness. Indeed, when populated with humans, the challenge is exacerbated be-
cause any mapped objects are almost certain to be occluded from view by the people.

Once again, more recent technologies provide some hope for overcoming these limitations.
Both vision and state-of-the-art laser rangefinding devices offer outdoor performance with
ranges of up to a hundred meters and more. Of course, GPS performs even better. Such
long-range sensing may be required for robots to localize using distant features.

This trend teases out a hidden assumption underlying most topological map representations.
Usually, topological representations make assumptions regarding spatial locality: a node
contains objects and features that are themselves within that node. The process of map cre-
ation thus involves making nodes that are, in their own self-contained way, recognizable by
virtue of the objects contained within the node. Therefore, in an indoor environment, each
room can be a separate node, and this is reasonable because each room will have a layout
and a set of belongings that are unique to that room.

However, consider the outdoor world of a wide-open park. Where should a single node end
and the next node begin? The answer is unclear because objects that are far away from the
current node, or position, can yield information for the localization process. For example,
the hump of a hill at the horizon, the position of a river in the valley and the trajectory of the
sun all are non-local features that have great bearing on one’s ability to infer current posi-
tion. The spatial locality assumption is violated and, instead, replaced by a visibility crite-
rion: the node or cell may need a mechanism for representing objects that are measurable
and visible from that cell. Once again, as sensors improve and, in this case, as outdoor lo-
comotion mechanisms improve, there will be greater urgency to solve problems associated
with localization in wide-open settings, with and without GPS-type global localization sen-
sors.
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We end this section with one final open challenge that represents one of the fundamental ac-
ademic research questions of robotics: sensor fusion. A variety of measurement types are
possible using off-the-shelf robot sensors, including heat, range, acoustic and light-based re-
flectivity, color, texture, friction, etc. Sensor fusion is a research topic closely related to map
representation. Just as a map must embody an environment in sufficient detail for a robot
to perform localization and reasoning, sensor fusion demands a representation of the world
that is sufficiently general and expressive that a variety of sensor types can have their data
correlated appropriately, strengthening the resulting percepts well beyond that of any indi-
vidual sensor’s readings.

Perhaps the only general implementation of sensor fusion to date is that of neural network
classifier. Using this technique, any number and any type of sensor values may be jointly
combined in a network that will use whatever means necessary to optimize its classification
accuracy. For the mobile robot that must use a human-readable internal map representation,
no equally general sensor fusion scheme has yet been born. It is reasonable to expect that,
when the sensor fusion problem is solved, integration of a large number of disparate sensor
types may easily result in sufficient discriminatory power for robots to achieve real-world
navigation, even in wide-open and dynamic circumstances such as a public square filled
with people.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.6 Probabilistic Map-Based Localization

5.6.1 Introduction

As stated earlier, multiple hypothesis position representation is advantageous because the
robot can explicitly track its own beliefs regarding its possible positions in the environment.
Ideally, the robot’s belief state will change, over time, as is consistent with its motor outputs
and perceptual inputs. One geometric approach to multiple hypothesis representation, men-
tioned earlier, involves identifying the possible positions of the robot by specifying a poly-
gon in the environmental representation [113]. This method does not provide any indication
of the relative chances between various possible robot positions.

Probabilistic techniques differ from this because they explicitly identify probabilities with
the possible robot positions, and for this reason these methods have been the focus of recent
research. In the following sections we present two classes of probabilistic localization. The
first class, Markov localization, uses an explicitly specified probability distribution across
all possible robots positions. The second method, Kalman filter localization, uses a Gauss-
ian probability density representation of robot position and scan matching for localization.
Unlike Markov localization, Kalman filter localization does not independently consider
each possible pose in the robot’s configuration space. Interestingly, the Kalman filter local-
ization process results from the Markov localization axioms if the robot’s position uncer-
tainty is assumed to have a Gaussian form [28 page 43-44].

Before discussing each method in detail, we present the general robot localization problem
and solution strategy. Consider a mobile robot moving in a known environment. As it starts
to move, say from a precisely known location, it can keep track of its motion using odome-
try. Due to odometry uncertainty, after some movement the robot will become very uncer-
tain about its position (see section 5.2.4). To keep position uncertainty from growing
unbounded, the robot must localize itself in relation to its environment map. To localize, the
robot might use its on-board sensors (ultrasonic, range sensor, vision) to make observations
of its environment. The information provided by the robot’s odometry, plus the information
provided by such exteroceptive observations can be combined to enable the robot to localize
as well as possible with respect to its map. The processes of updating based on propriocep-
tive sensor values and exteroceptive sensor values are often separated logically, leading to
a general two-step process for robot position update.

Action update represents the application of some action model Act to the mobile robot’s

proprioceptive encoder measurements and prior belief state to yield a new belief

state representing the robot’s belief about its current position. Note that throughout this
chapter we will assume that the robot’s proprioceptive encoder measurements are used as
the best possible measure of its actions over time. If, for instance, a differential drive robot
had motors without encoders connected to its wheels and employed open-loop control, then
instead of encoder measurements the robot’s highly uncertain estimates of wheel spin would
need to be incorporated. We ignore such cases and therefore have a simple formula:

. (5.16)
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Perception update represents the application of some perception model See to the mobile

robot’s exteroceptive sensor inputs and updated belief state to yield a refined belief

state representing the robot’s current position:

(5.17)

The perception model See and sometimes the action model Act are abstract functions of both
the map and the robot’s physical configuration (e.g. sensors and their positions, kinematics,
etc.).

In general, the action update process contributes uncertainty to the robot’s belief about po-
sition: encoders have error and therefore motion is somewhat nondeterministic. By contrast,
perception update generally refines the belief state. Sensor measurements, when compared
to the robot’s environmental model, tend to provide clues regarding the robot’s possible po-
sition.

In the case of Markov localization, the robot’s belief state is usually represented as separate
probability assignments for every possible robot pose in its map. The action update and per-
ception update processes must update the probability of every cell in this case. Kalman filter
localization represents the robot’s belief state using a singe, well-defined Gaussian proba-

bility density function, and thus retains just a and parameterization of the robot’s belief

about position with respect to the map. Updating the parameters of the Gaussian distribution
is all that is required. This fundamental difference in the representation of belief state leads
to the following advantages and disadvantages of the two methods, as presented in [44]:

• Markov localization allows for localization starting from any unknown position and
can thus recover from ambiguous situations because the robot can track multiple,
completely disparate possible positions. However, to update the probability of all
positions within the whole state space at any time requires a discrete representation
of the space (grid). The required memory and computational power can thus limit
precision and map size.

• Kalman filter localization tracks the robot from an initially known position and is in-
herently both precise and efficient. In particular, Kalman filter localization can be
used in continuous world representations. However, if the uncertainty of the robot
becomes too large (e.g. due to a robot collision with an object) and thus not truly un-
imodal, the Kalman filter can fail to capture the multitude of possible robot positions
and can become irrevocably lost.

In recent research projects improvements are achieved or proposed by either only updating
the state space of interest within the Markov approach [43] or by combining both methods
to create a hybrid localization system [44]. In the next two subsections we will present each
approach in detail.

5.6.2 Markov Localization (see also [42, 45, 71, 72])

Markov localization tracks the robot’s belief state using an arbitrary probability density
function to represent the robot’s position. In practice, all known Markov localization sys-
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tems implement this generic belief representation by first tessellating the robot configuration
space into a finite, discrete number of possible robot poses in the map. In actual applica-
tions, the number of possible poses can range from several hundred positions to millions of
positions.

Given such a generic conception of robot position, a powerful update mechanism is required
that can compute the belief state that results when new information (e.g. encoder values and
sensor values) is incorporated into a prior belief state with arbitrary probability density. The
solution is born out of probability theory, and so the next section describes the foundations
of probability theory that apply to this problem, notably Bayes formula. Then, two subse-
quent subsections provide case studies, one robot implementing a simple feature-driven to-
pological representation of the environment [45, 71, 72] and the other using a geometric
grid-based map[42, 43].

5.6.2.1 Introduction: applying probability theory to robot localization

Given a discrete representation of robot positions, in order to express a belief state we wish
to assign to each possible robot position a probability that the robot is indeed at that position.
From probability theory we use the term p(A) to denote the probability that A is true. This
is also called the prior probability of A because it measures the probability that A is true in-

dependent of any additional knowledge we may have. For example we can use to

denote the prior probability that the robot r is at position l at time t.

In practice, we wish to compute the probability of each individual robot position given the
encoder and sensor evidence the robot has collected. In probability theory, we use the term
p(A|B) to denote the conditional probability of A given that we know B. For example, we

use to denote the probability that the robot is at position l given that the robot’s

sensor inputs i.

The question is, how can a term such as be simplified to its constituent parts so

that it can be computed? The answer lies in the product rule, which states:

(5.18)

Equation 5.18 is intuitively straightforward, as the probability of both A and B being true is
being related to B being true and the other being conditionally true. But you should be able
to convince yourself that the alternate equation is equally correct:

(5.19)

Using Equations 5.18 and 5.19 together, we can derive Bayes formula for computing p(A|B):

(5.20)

We use Bayes rule to compute the robot’s new belief state as a function of its sensory inputs

p rt l=( )

p rt l it=( )

p rt l it=( )

p A B∧( ) p A B( )p B( )=

p A B∧( ) p B A( )p A( )=

p A B( )
p B A( )p A( )

p B( )
------------------------------=



5 Mobile Robot Localization 191
and its former belief state. But to do this properly, we must recall the basic goal of the Mark-
ov localization approach: a discrete set of possible robot positions L are represented. The

belief state of the robot must assign a probability for each location l in L.

The See function described in Equation 5.17 expresses a mapping from a belief state and
sensor input to a refined belief state. To do this, we must update the probability associated
with each position l in L, and we can do this by directly applying Bayes formula to every
such l. In denoting this, we will stop representing the temporal index t for simplicity and
will further use p(l) to mean p(r=l):

(5.21)

The value of p(i|l) is key to Equation 5.21, and this probability of a sensor input at each robot
position must be computed using some model. An obvious strategy would be to consult the
robot’s map, identifying the probability of particular sensor readings with each possible map
position, given knowledge about the robot’s sensor geometry and the mapped environment.
The value of p(l) is easy to recover in this case. It is simply the probability p(r=l) associated
with the belief state before the perceptual update process. Finally, note that the denominator
p(i) does not depend upon l; that is, as we apply Equation 5.21 to all positions l in L, the
denominator never varies. Because it is effectively constant, in practice this denominator is
usually dropped and, at the end of the perception update step, all probabilities in the belief
state are re-normalized to sum at 1.0.

Now consider the Act function of Equation 5.16. Act maps a former belief state and encoder
measurement (i.e. robot action) to a new belief state. In order to compute the probability of
position l in the new belief state, one must integrate over all the possible ways in which the
robot may have reached l according to the potential positions expressed in the former belief
state. This is subtle but fundamentally important. The same location l can be reached from
multiple source locations with the same encoder measurement o because the encoder mea-
surement is uncertain. Temporal indices are required in this update equation:

(5.22)

Thus, the total probability for a specific position l is built up from the individual contribu-

tions from every location in the former belief state given encoder measurement o.

Equations 5.21 and 5.22 form the basis of Markov localization, and they incorporate the
Markov assumption. Formally, this means that their output is a function only of the robot’s
previous state and its most recent actions (odometry) and perception. In a general, non-
Markovian situation, the state of a system depends upon all of its history. After all, the value
of a robot’s sensors at time t do not really depend only on its position at time t. They depend
to some degree on the trajectory of the robot over time; indeed on the entire history of the
robot. For example, the robot could have experienced a serious collision recently that has
biased the sensor’s behavior. By the same token, the position of the robot at time t does not
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really depend only on its position at time t-1 and its odometric measurements. Due to its
history of motion, one wheel may have worn more than the other, causing a left-turning bias
over time that affects its current position.

So the Markov assumption is, of course, not a valid assumption. However the Markov as-
sumption greatly simplifies tracking, reasoning and planning and so it is an approximation
that continues to be extremely popular in mobile robotics.

5.6.2.2 Case Study I: Markov Localization using a Topological Map

A straightforward application of Markov localization is possible when the robot’s environ-
ment representation already provides an appropriate decomposition. This is the case when
the environment representation is purely topological.

Consider a contest in which each robot is to receive a topological description of the environ-
ment. The description would describe only the connectivity of hallways and rooms, with no
mention of geometric distance. In addition, this supplied map would be imperfect, contain-
ing several false arcs (e.g. a closed door). Such was the case for the 1994 AAAI National
Robot Contest, at which each robot’s mission was to use the supplied map and its own sen-
sors to navigate from a chosen starting position to a target room.

Dervish, the winner of this contest, employed probabilistic Markov localization and used
just this multiple hypothesis belief state over a topological environmental representation.
We now describe Dervish as an example of a robot with a topological representation and a
probabilistic localization algorithm.

Dervish, shown in Figure 5.20, includes a sonar arrangement custom-designed for the 1994
AAAI National Robot Contest. The environment in this contest consisted of a rectilinear
indoor office space filled with real office furniture as obstacles. Traditional sonars are ar-
ranged radially around the robot in a ring. Robots with such sensor configurations are sub-
ject to both tripping over short objects below the ring and to decapitation by tall objects
(such as ledges, shelves and tables) that are above the ring.

Dervish’s answer to this challenge was to arrange one pair of sonars diagonally upward to

Fig 5.20 Dervish exploring its environment
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detect ledges and other overhangs. In addition, the diagonal sonar pair also proved to ably
detect tables, enabling the robot to avoid wandering underneath tall tables. The remaining
sonars were clustered in sets of sonars, such that each individual transducer in the set would
be at a slightly varied angle to minimize specularity. Finally, two sonars near the robot’s
base were able to detect low obstacles such as paper cups on the floor.

We have already noted that the representation provided by the contest organizers was purely
topological, noting the connectivity of hallways and rooms in the office environment. Thus,
it would be appropriate to design Dervish’s perceptual system to detect matching perceptual
events: the detection and passage of connections between hallways and offices.

This abstract perceptual system was implemented by viewing the trajectory of sonar strikes
to the left and right sides of Dervish over time. Interestingly, this perceptual system would
use time alone and no concept of encoder value in order to trigger perceptual events. Thus,
for instance, when the robot detects a 7 to 17 cm indentation in the width of the hallway for
more than one second continuously, a closed door sensory event is triggered. If the sonar
strikes jump well beyond 17 cm for more than one second, an open door sensory event trig-
gers.

Sonars have a notoriously problematic error mode known as specular reflection: when the
sonar unit strikes a flat surface at a shallow angle, the sound may reflect coherently away
from the transducer, resulting in a large overestimate of range. Dervish was able to filter
such potential noise by tracking its approximate angle in the hallway and completely sup-
pressing sensor events when its angle to the hallway parallel exceeded 9 degrees. Interest-
ingly, this would result in a conservative perceptual system that would easily miss features
because of this suppression mechanism, particularly when the hallway is crowded with ob-
stacles that Dervish must negotiate. Once again, the conservative nature of the perceptual
system, and in particular its tendency to issue false negatives, would point to a probabilistic
solution to the localization problem so that a complete trajectory of perceptual inputs could
be considered.

Dervish’s environment representation was a classical topological map, identical in abstrac-
tion and information to the map provided by the contest organizers. Figure 5.21 depicts a
geometric representation of a typical office environment and the topological map for the
same office environment. One can place nodes at each intersection and in each room, re-
sulting in the case of figure 5.21 with four nodes total.

Once again, though, it is crucial that one maximize the information content of the represen-
tation based on the available percepts. This means reformulating the standard topological
graph shown in Figure 5.21 so that transitions into and out of intersections may both be used

Fig 5.21 A geometric office environment (left) and its topological analogue (right)
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for position updates. Figure 5.22 shows a modification of the topological map in which just
this step has been taken. In this case, note that there are 7 nodes in contrast to 4.

In order to represent a specific belief state, Dervish associated with each topological node n

a probability that the robot is at a physical position within the boundaries of n: .

As will become clear below, the probabilistic update used by Dervish was approximate,
therefore technically one should refer to the resulting values as likelihoods rather than prob-
abilities.

The perception update process for Dervish functions precisely as in Equation (5.21). Per-
ceptual events are generated asynchronously, each time the feature extractor is able to rec-
ognize a large-scale feature (e.g. doorway, intersection) based on recent ultrasonic values.
Each perceptual event consists of a percept-pair (a feature on one side of the robot or two
features on both sides).

Given a specific percept pair i, Equation (5.21) enables the likelihood of each possible po-
sition n to be updated using the formula:

(5.23)

The value of p(n) is already available from the current belief state of Dervish, and so the
challenge lies in computing p(i|n). The key simplification for Dervish is based upon the re-
alization that, because the feature extraction system only extracts 4 total features and be-
cause a node contains (on a single side) one of 5 total features, every possible combination
of node type and extracted feature can be represented in a 4 x 5 table.

Dervish’s certainty matrix (show in Table 5.1) is just this lookup table. Dervish makes the
simplifying assumption that the performance of the feature detector (i.e. the probability that
it is correct) is only a function of the feature extracted and the actual feature in the node.
With this assumption in hand, we can populate the certainty matrix with confidence esti-

Table 5.1: Dervish’s certainty matrix.

Wall Closed
Door

Open
Door

Open
Hallway

Foyer

Nothing detected 0.70 0.40 0.05 0.001 0.30

Closed door detected 0.30 0.60 0 0 0.05

Open door detected 0 0 0.90 0.10 0.15

Open hallway detected 0 0 0.001 0.90 0.50

Fig 5.22 A modification of the topological map to maximize information.
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mates for each possible pairing of perception and node type. For each of the five world fea-
tures that the robot can encounter (wall, closed door, open door, open hallway and foyer)
this matrix assigns a likelihood for each of the three one-sided percepts that the sensory sys-
tem can issue. In addition, this matrix assigns a likelihood that the sensory system will fail
to issue a perceptual event altogether (nothing detected).

For example, using the specific values in Table 5.1, if Dervish is next to an open hallway,
the likelihood of mistakenly recognizing it as an open door is 0.10. This means that for any
node n that is of type Open Hallway and for the sensor value i=Open door, p(i|n) = 0.10.
Together with a specific topological map, the certainty matrix enables straightforward com-
putation of p(i|n) during the perception update process.

For Dervish’s particular sensory suite and for any specific environment it intends to navi-
gate, humans generate a specific certainty matrix that loosely represents its perceptual con-
fidence, along with a global measure for the probability that any given door will be closed
versus opened in the real world.

Recall that Dervish has no encoders and that perceptual events are triggered asynchronously
by the feature extraction processes. Therefore, Dervish has no action update step as depicted
by Equation (5.22). When the robot does detect a perceptual event, multiple perception up-
date steps will need to be performed in order to update the likelihood of every possible robot
position given Dervish’s former belief state. This is because there is often a chance that the
robot has traveled multiple topological nodes since its previous perceptual event (i.e. false
negative errors). Formally, the perception update formula for Dervish is in reality a combi-
nation of the general form of action update and perception update. The likelihood of posi-
tion n given perceptual event i is calculated as in Equation (5.22):

(5.24)

The value of denotes the likelihood of Dervish being at position as represented

by Dervish’s former belief state. The temporal subscript t-i is used in lieu of t-1 because for

each possible position the discrete topological distance from to n can vary depending

on the specific topological map. The calculation of is performed by multi-

plying the probability of generating perceptual event i at position n by the probability of hav-

ing failed to generate perceptual events at all nodes between and n:

(5.25)

For example (figure 5.23), suppose that the robot has only two nonzero nodes in its belief
state, {1-2, 2-3}, with likelihoods associated with each possible position: p(1-2) = 1.0 and
p(2-3) = 0.2. For simplicity assume the robot is facing East with certainty. Note that the
likelihoods for nodes 1-2 and 2-3 do not sum to 1.0. These values are not formal probabil-
ities, and so computational effort is minimized in Dervish by avoiding normalization alto-
gether. Now suppose that a perceptual event is generated: the robot detects an open hallway
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on its left and an open door on its right simultaneously.

State 2-3 will progress potentially to states 3, 3-4 and 4. But states 3 and 3-4 can be elimi-
nated because the likelihood of detecting an open door when there is only wall is zero. The
likelihood of reaching state 4 is the product of the initial likelihood for state 2-3, 0.2, the like-
lihood of not detecting anything at node 3, (a), and the likelihood of detecting a hallway on
the left and a door on the right at node 4, (b). Note that we assume the likelihood of detecting
nothing at node 3-4 is 1.0 (a simplifying approximation).

(a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or open),
[(0.6)(0.4) + (1-0.6)(0.05)], and correctly detects nothing on its right, 0.7.

(b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and mis-
takes the right hallway for an open door, 0.10.

The final formula, (0.2)[(0.6)(0.4)+(0.4)(0.05)](0.7)[(0.9)(0.1)], yields a likelihood of 0.003
for state 4. This is a partial result for p(4) following from the prior belief state node 2-3.

Turning to the other node in Dervish’s prior belief state, 1-2 will potentially progress to
states 2, 2-3, 3, 3-4 and 4. Again, states 2-3, 3 and 3-4 can all be eliminated since the like-
lihood of detecting an open door when a wall is present is zero. The likelihood of state 2 is
the product of the prior likelihood for state 1-2, (1.0), the likelihood of detecting the door
on the right as an open door, [(0.6)(0) + (0.4)(0.9)], and the likelihood of correctly detecting
an open hallway to the left, 0.9. The likelihood for being at state 2 is then
(1.0)(0.4)(0.9)(0.9) = 0.3. In addition, 1-2 progresses to state 4 with a certainty factor of

, which is added to the certainty factor above to bring the total for state 4 to

0.00328. Dervish would therefore track the new belief state to be {2, 4}, assigning a very
high likelihood to position 2 and a low likelihood to position 4.

Empirically, Dervish’s map representation and localization system have proven to be suffi-
cient for navigation of four indoor office environments: the artificial office environment cre-
ated explicitly for the 1994 National Conference on Artificial Intelligence; the psychology
department, the history department and the computer science department at Stanford Uni-
versity. All of these experiments were run while providing Dervish with no notion of the
distance between adjacent nodes in its topological map. It is a demonstration of the power
of probabilistic localization that, in spite of the tremendous lack of action and encoder infor-
mation, the robot is able to navigate several real-world office buildings successfully.

Fig 5.23 A realistic indoor topological environment.
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One open question remains with respect to Dervish’s localization system. Dervish was not
just a localizer but also a navigator. As with all multiple hypothesis systems, one must ask
the question, how does the robot decide how to move, given that it has multiple possible ro-
bot positions in its representation? The technique employed by Dervish is a most common
technique in the mobile robotics field: plan the robot’s actions by assuming that the robot’s
actual position is its most likely node in the belief state. Generally, the most likely position
is a good measure of the robot’s actual world position. However, this technique has short-
comings when the highest and second highest most likely positions have similar values. In
the case of Dervish, it nonetheless goes with the highest likelihood position at all times, save
at one critical juncture. The robot’s goal is to enter a target room and remain there. There-
fore, from the point of view of its goal, it is critical that it finish navigating only when the
robot has strong confidence in being at the correct final location. In this particular case, Der-
vish’s execution module refuses to enter a room if the gap between the most likely position
and the second likeliest position is below a preset threshold. In such a case, Dervish will
actively plan a path that causes it to move further down the hallway in an attempt to collect
more sensor data and thereby increase the relative likelihood of one position in the belief
state.

Although computationally unattractive, one can go further, imagining a planning system for
robots such as Dervish for which one specifies a goal belief state rather than a goal position.
The robot can then reason and plan in order to achieve a goal confidence level, thus explic-
itly taking into account not only robot position but also the measured likelihood of each po-
sition. An example of just such a procedure is the Sensory Uncertainty Field of Latombe
[90], in which the robot must find a trajectory that reaches its goal while maximizing its lo-
calization confidence enroute.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.6.2.3 Case Study II: Markov Localization using a Grid Map

The major weakness of a purely topological decomposition of the environment is the reso-
lution limitation imposed by such a granular representation. The position of the robot is usu-
ally limited to the resolution of a single node in such cases, and this may be undesirable for
certain applications.

In this case study, we examine the work of Burgard et al. [42, 43] in which far more precise
navigation is made possible using a grid-based representation while still employing the
Markov localization technique.

The robot used by this research, Rhino, is an RWI B24 robot with 24 sonars and 2 Sick laser
rangefinders. Clearly, at the sensory level this robot accumulates greater and more accurate
range data than is possible with the handful of sonar sensors mounted on Dervish. In order
to make maximal use of this fine-grained sensory data, Rhino uses a 2D geometric environ-
mental representation of free and occupied space. This metric map is tessellated regularly
into a fixed decomposition grid with each cell occupying 4 - 64cm in various instantiations.

Like Dervish, Rhino uses multiple hypothesis belief representation. In line with the far im-
proved resolution of the environment representation, the belief state representation of Rhino

consists of a 15 x 15 x 15 3D array representing the probability of possible robot posi-

tions (see Figure 5.24). The resolution of the array is 15cm x 15cm x 1°. Note that unlike
Dervish, which assumes its orientation is approximate and known, Rhino explicitly repre-
sents fine-grained alternative orientations, and so its belief state formally represents three
degrees of freedom. As we have stated before, the resolution of the belief state representa-
tion must match the environment representation in order for the overall system to function
well.

Whereas Dervish made use only perceptual events, ignoring encoder inputs and therefore
metric distance altogether, Rhino uses the complete Markov probabilistic localization ap-
proach summarized in Section (5.6.2.1), including both an explicit action update phase and

15
3

Fig 5.24 The belief state representation 3D array used by Rhino
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a perception update phase at every cycle.

The discrete Markov chain version of action update is performed because of the tessellated
representation of position. Given encoder measurements o at time t, each updated position
probability in the belief state is expressed as a sum over previous possible positions and the
motion model:

(5.26)

Note that Equation (5.26) is simply a discrete version of Equation (5.22). The specific mo-
tion model used by Rhino represents the result of motion as a Gaussian that is bounded (i.e.
the tails of the distribution are finite). Rhino’s kinematic configuration is a 3-wheel syn-
chro-drive rather than a differential drive robot. Nevertheless, the error ellipses depicted in
Figures (5.4) and (5.5) are similar to the Gaussian bounds that result from Rhino’s motion
model.

The perception model follows Bayes formula precisely as in Equation (5.21). Given a range
perception i the probability of the robot being at each location l is updated as follows:

(5.27)

Note that a denominator is used by Rhino, although the denominator is constant for varying
values of l. This denominator acts as a normalizer to ensure that the probability measures in
the belief state continue to sum to 1.

The critical challenge is, of course, the calculation of p(i|l). In the case of Dervish, the num-
ber of possible values for i and l were so small that a simple table could suffice. However,
with the fine-grained metric representation of Rhino, the number of possible sensor readings
and environmental geometric contexts is extremely large. Thus, Rhino computes p(i|l) di-
rectly using a model of the robot’s sensor behavior, its position l and the local environmental
metric map around l.

The sensor model must calculate the probability of a specific perceptual measurement given
that its likelihood is justified by known errors of the sonar or laser rangefinder sensors.
Three key assumptions are used to construct this sensor model:

1 If an object in the metric map is detected by a range sensor, the measurement error
can be described with a distribution that has a mean at the correct reading.

2 There should always be a nonzero chance that a range sensor will read any measure-
ment value, even if this measurement disagrees sharply with the environmental ge-
ometry.

3 In contrast to the generic error described in #2, there is a specific failure mode in
ranging sensors whereby the signal is absorbed or coherently reflected, causing the
sensor’s range measurement to be maximal. Therefore, there is a local peak in the
probability density distribution at the maximal reading of a range sensor.
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By validating these assumptions using empirical sonar trials in multiple environments, the
research group has delivered to Rhino a conservative and powerful sensor model for its par-
ticular sensors.

Figure 5.25 provides a simple 1D example of the grid-based Markov localization algorithm.
The robot begins with a flat probability density function for its possible location. In other
words, it initially has no bias regarding position. As the robot encounters first one door and
then a second door, the probability density function over possible positions becomes first
multimodal and finally unimodal and sharply defined. The ability of a Markov localization
system to localize the robot from an initially lost belief state is its key distinguishing feature.

The resulting robot localization system has been part of a navigation system that has dem-
onstrated great success both at the University of Bonn and at a public museum in Bonn. This
is a challenging application because of the dynamic nature of the environment, as the robot’s
sensors are frequently subject to occlusion due to humans gathering around the robot. Rhi-
no’s ability to function well in this setting is a demonstration of the power of the Markov
localization approach

Reducing computational complexity: Randomized Sampling

A great many steps are taken in real-world implementations such as Rhino in order to effect
computational gains. These are valuable because, with an exact cell decomposition repre-
sentation and use of raw sensor values rather than abstraction to features, such a robot has a

Fig 5.25 Improving belief state by moving. Roland, we need to re-make this picture
for copyright reasons probably.
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massive computational effort associated with each perceptual update.

One class of techniques deserves mention because it can significantly reduce the computa-
tional overhead of techniques that employ fixed-cell decomposition representations. The
basic idea, which we call randomized sampling is known alternatively as Particle filter al-
gorithms, Condensation algorithms and Monte Carlo algorithms [ROLAND, reference the
Thrun et al. paper on "Robust Monte Carlo" in my text file].

Irrespective of the specific technique, the basic algorithm is the same in all these cases. In-
stead of representing every possibe robot position by representing the complete and correct
belief state, an approximate belief state is constructed by representing only a subset of the
complete set of possible locations that should be considered.

For example, consider a robot with a complete belief state of 10,000 possible locations at
time t. Instead of tracking and updating all 10,000 possible locations based on a new sensor
measurement, the robot can select only 10% of the stored locations and update only those
locations. By weighting this sampling process with the probability values of the locations,
one can bias the system to generate more samples at local peaks in the probability density
function. So, the resulting 1,000 locations will be concentrated primarily at the highest
probability locations. This biasing is desirable, but only to a point.

We also wish to ensure that some less likely locations are tracked, as otherwise, if the robot
does indeed receive unlikely sensor measurements, it will fail to localize. This randomiza-
tion of the sampling process can be performed by adding additional samples from a flat dis-
tribution for example. Further enhancements of these randomized methods enable the
number of statistical samples to be varied on-the-fly, based for instance on the ongoing lo-
calization confidence of the system. This further reduces the number of samples required
on average while guaranteeing that a large number of samples will be used when necessary
[ROLAND, reference the Fox NIPS article on KLD-Sampling Adaptive Particle Filters]

These sampling techniques have resulted in robots that function indistinguishably as com-
pared to their full belief state set ancestors, yet use computationally a fraction of the resourc-
es. Of course, such sampling has a penalty: completeness. The probabilistically complete
nature of Markov localization is violated by these sampling approaches because the robot is
failing to update all the nonzero probability locations, and thus there is a danger that the ro-
bot, due to an unlikely but correct sensor reading, could become truly lost. Of course, re-
covery from a lost state is feasible just as with all Markov localization techniques.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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5.6.3 Kalman Filter Localization

The Markov localization model can represent any probability density function over robot
position. This approach is very general but, due to its generality, inefficient. A successful
alternative is to use a more compact representation of a specific class of probability densi-
ties. The Kalman filter does just this, and is an optimal recursive data processing algorithm.
It incorporates all information, regardless of precision, to estimate the current value of the
variable of interest. A comprehensive introduction can be found in [46] and a more detailed
treatment is presented in [28].

Figure 5.26 depicts the a general scheme of Kalman filter estimation, where the system has
a control signal and system error sources as inputs. A measuring device enables measuring
some system states with errors. The Kalman filter is a mathematical mechanism for produc-
ing an optimal estimate of the system state based on the knowledge of the system and the
measuring device, the description of the system noise and measurement errors and the un-
certainty in the dynamics models. Thus the Kalman filter fuses sensor signals and system
knowledge in an optimal way. Optimality depends on the criteria chosen to evaluate the per-
formance and on the assumptions. Within the Kalman filter theory the system is assumed to
be linear and white with Gaussian noise. As we have discussed earlier, the assumption of
Gaussian error is invalid for our mobile robot applications but, nevertheless, the results are
extremely useful. In other engineering disciplines, the Gaussian error assumption has in
some cases been shown to be quite accurate [46].

We begin with a subsection that introduces Kalman filter theory, then we present an appli-
cation of that theory to the problem of mobile robot localization. Finally, the third subsec-
tion will present a case study of a mobile robot that navigates indoor spaces by virtue of
Kalman filter localization.

System

Fig 5.26 Typical Kalman filter application [46]
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5.6.3.1 Introduction to Kalman Filter Theory

The basic Kalman filter method allows multiple measurements to be incorporated optimally
into a single estimate of state. In demonstrating this, first we make the simplifying assump-
tion that the state does not change (e.g. the robot does not move) between the acquisition of
the first and second measurement. After presenting this static case, we can introduce dy-
namic prediction readily.

Static Estimation

Assume we have taken two measurements, one with an ultrasonic range sensor at time k and
one with a more precise laser range sensor at time k+1. Based on each measurement we are
able to estimate the robot’s position. Such an estimate derived from the first sensor mea-
surements is q1 and the estimate of position based on the second measurement is q2. Since

we know that each measurement can be inaccurate, we wish to modulate these position es-
timates based on the measurement error expected from each sensor. Suppose that we use

two variances and to predict the error associated with each measurement. We will,

of course, assume a unimodal error distribution throughout the remainder of the Kalman fil-
ter approach, yielding the two robot position estimates:

with variance (5.28)

with variance . (5.29)

So we have two measurements available to estimate the robots position. The question is,

how do we fuse (combine) these data to get the best estimate for the robot position?

We are assuming that there was no robot motion between time k and time k+1, and therefore
we can directly apply the same weighted least square technique of Equation 4.61 in Section
4.3.1.1. Thus we write:

(5.30)

with wi being the weight of measurement i. To find the minimum error we set the derivative

of S equal to zero.

(5.31)

σ1
2 σ2

2

q̂1 q1= σ1
2

q̂2 q2= σ2
2

q̂

S wi q̂ qi–( )2

i 1=

n

∑=

S∂
q̂∂

-----
q̂∂
∂

wi q̂ qi–( )2

i 1=

n

∑ 2 wi q̂ qi–( )
i 1=

n

∑ 0= = =
R. Siegwart, EPFL, Illah Nourbakhsh, CMU



204 Autonomous Mobile Robots
(5.32)

(5.33)

If we take as the weight wi

(5.34)

then the value of in terms of two measurements can be defined as follows:

(5.35)

; (5.36)

Note that, from (5.36) we can see that the resulting variance is less than all the variances

of the individual measurements. Thus the uncertainty of the position estimate has been

decreased by combining the two measurements. This demonstrates that even poor measure-
ments only increase the precision of an estimate (fig. 5.27), a result that we expect based on
Information Theory.

Equation (5.35) can be rewritten as

(5.37)

or, in final form that is used in Kalman filter implementation
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(5.38)

where

; ; (5.39)

Equation (5.38) tells us, that the best estimate of the state at time k+1 is equal

to the best prediction of the value before the new measurement is taken, plus a cor-

rection term of an optimal weighting value times the difference between and the best

prediction at time k+1. The updated variance of the state is given using equation

(5.36)

(5.40)

Dynamic Estimation

Next, consider a robot that moves between successive sensor measurements. Suppose that
the motion of the robot between times k and k+1 is described by the velocity u and the noise
w which represents the uncertainty of the actual velocity:

(5.41)

Fig 5.27 Fusing probability density of two estimates [46]
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If we now start at time k, knowing the variance of the robot position at this time and

knowing the variance of the motion, we obtain for the time just when the measure-

ment is taken:

(5.42)

(5.43)

where:

tk’ = tk+1

tk+1 and tk are the time in seconds at k+1 and k respectively.

Thus is the optimal prediction of the robot’s position just as the measurement is taken

at time k+1. It describes the growth of position error until a new measurement is taken (fig.
5.28).

We can now rewrite equation (5.38) and (5.39) using equation (5.42) and (5.43).

(5.44)

(5.45)

The optimal estimate at time k+1 is given by the last estimate at k and the estimate of the
robot motion including the estimated movement errors.

By extending the above equations to the vector case and allowing time varying parameters
in the system and a description of noise, we can derive the Kalman filter localization algo-
rithm.
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Fig 5.28 Propagation of probability density of a moving robot [46]
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5.6.3.2 Application to mobile robots: Kalman filter localization

The Kalman filter is an optimal and efficient sensor fusion technique. Application of the
Kalman filter to localization requires posing the robot localization problem as a sensor fu-
sion problem. Recall that the basic probabilistic update of robot belief state can be segment-
ed into two phases, perception update and action update as specified by Equations 5.21 and
5.22.

The key difference between the Kalman filter approach and our earlier Markov localization
approach lies in the perception update process. In Markov localization, the entire percep-
tion, i.e. the robot’s set of instantaneous sensor measurements, is used to update each possi-
ble robot position in the belief state individually using Bayes formula. In some cases, the
perception is abstract, having been produced by a feature extraction mechanism as in Der-
vish. In other cases, as with Rhino, the perception consists of raw sensor readings.

By contrast, perception update using a Kalman filter is a multi-step process. The robot’s to-
tal sensory input is treated, not as a monolithic whole, but as a set of extracted features that
each relate to objects in the environment. Given a set of possible features, the Kalman filter
is used to fuse the distance estimate from each feature to a matching object in the map. In-
stead of carrying out this matching process for many possible robot locations individually
as in the Markov approach, the Kalman filter accomplishes the same probabilistic update by
treating the whole, unimodal and Gaussian belief state at once. Figure 5.29 depicts the par-
ticular schematic for Kalman filter localization.

The first step is action update or position prediction, the straightforward application of a
Gaussian error motion model to the robot’s measured encoder travel. The robot then collects
actual sensor data and extracts appropriate features (e.g. lines, doors, or even the value of a
specific sensor) in the observation step. At the same time, based on its predicted position in
the map, the robot generates a measurement prediction which identifies the features that the

Actual Observations
on-board sensors

Map
data base

Position Prediction
Observation Prediction

Fig 5.29 Schematic for Kalman filter mobile robot localization (see [9])
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robot expects to find and the positions of those features. In matching the robot identifies the
best pairings between the features actually extracted during observation and the expected
features due to measurement prediction. Finally, the Kalman filter can fuse the information
provided by all of these matches in order to update the robot belief state in estimation.

In the following sub-sections these five steps are described in greater detail. The presenta-
tion is based on the work of Leonard and Durrant-Whyte [9 page 61-65].

1. Robot Position Prediction

The robot’s position at time step k+1 is predicted based on its old location (at time step k)

and its movement due to the control input :

(5.46)

For the differential drive robot, is derived in Equations (5.6) and (5.7) re-

spectively.

Knowing the plant and error model, we can also compute the variance associ-

ated with this prediction (see eq. (5.9) section 5.2.4):

(5.47)

This allows us to predict the robot’s position and its uncertainty after a movement specified

by the control input . Note that the belief state is assumed to be Gaussian, and so we

can characterize the believe state with just the two parameters and .

2. Observation

The second step it to obtain sensor measurements from the robot at time k+1. In

this presentation, we assume that the observation is the result of a feature extraction process

executed on the raw sensor data. Therefore, the observation consists of a set of single

observations extracted from various sensors. Formally each single observation can

represent an extracted features such as a line or door, or even a single, raw sensor value.

The parameters of the features are usually specified in the sensor frame and therefore in a
local reference frame of the robot. However, for matching we need to represent the obser-

vations and measurement predictions in the same frame . In our presentation we will

transform the measurement predictions from the global coordinate frame to the sensor frame

. This transformation is specified in the function discussed in the next paragraph.
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3. Measurement Prediction

We use the predicted robot position and the map to generate multiple pre-

dicted feature observations . Each predicted feature has its position transformed into the

sensor frame:

(5.48)

We can define the measurement prediction as the set containing all predicted feature ob-

servations:

(5.49)

The predicted state estimate is used to compute the measurement Jacobian

for each prediction. As you will see in the example below, the function is mainly a coor-

dinate transformation between the world frame and the sensor frame.

4. Matching

At this point we have a set of actual, single observations, which are features in sensor space,
and we also have a set of predicted features, also positioned in sensor space. The matching
step has the purpose of identifying all of the single observations that match specific predict-
ed features well enough to be used during the estimation process. In other words, we will,
for a subset of the observations and a subset of the predicted features, find pairings that in-
tuitively say "this observation is the robot’s measurement of this predicted feature based on
the map."

Formally, the goal of the matching procedure is to produce an assignment from observations

to the targets (stored in the map). For each measurement prediction for which

a corresponding observation is found we calculate the innovation . Innovation is

a measure of the difference between the predicted and observed measurements:

(5.50)

The innovation covariance can be found by applying the error propagation

law (section 4.2.3 equation (4.60)):

(5.51)

where represents the covariance (noise) of the measurement .

To determine the validity of the correspondence between measurement prediction and ob-
servation, a validation gate has to be specified. A possible definition of the validation gate
is the Mahalanobis distance:
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(5.52)

However, dependent on the application, the sensors and the environment models, more so-
phisticated validation gates might be employed.

The validation equation is used to test observation for membership in the valida-

tion gate for each predicted measurement. When a single observation falls in the validation
gate, we get a successful match. If one observation falls in multiple validation gates, the best
matching candidate is selected or multiple hypothesis are tracked. Observations that do not
fall in the validation gate are simply ignored for localization. Such observations could have
resulted from objects not in the map, such as new objects (e.g. someone places a large box
in the hallway) or transient objects (e.g. humans standing next to the robot may form a line
feature). One approach is to take advantage of such unmatched observations to populate the
robot’s map.

5. Estimation: applying the Kalman Filter

Next we compute the best estimate of the robot’s position based on the po-

sition prediction and all the observations at time k+1. To do this position update, we first

stack the validated observations into a single vector to form and desig-

nate the composite innovation . Then we stack the measurement Jacobians for

each validated measurement together to form the composite Jacobian and the measure-

ment error (noise) vector . We can then compute the com-

posite innovation covariance according to equation (5.51) and by utilizing the

well-known result [28] that the Kalman gain can be written as

(5.53)

we can update the robot’s position estimate

(5.54)

with the associated variance

(5.55)

For the one-dimensional case and with we can show that this for-

mula corresponds to the 1D case derived earlier:

Equation 5.53 is simplified to:
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(5.56)

corresponding to equation (5.45) and Equation 5.54 simplifies to:

(5.57)

corresponding to equation (5.44).

5.6.3.3 Case study: Kalman filter localization with line feature extraction

The Pygmalion robot at EPFL is a differential drive robot that uses a laser rangefinder as its
primary sensor [39], [76]. In contrast to both Dervish and Rhino, the environmental repre-
sentation of Pygmalion is continuous and abstract: the map consists of a set of infinite lines
describing the environment. Pygmalion’s belief state is, of course, represented as a Gauss-
ian distribution since this robot uses the Kalman filter localization algorithm. The value of

its mean position is represented to a high level of precision, enabling Pygmalion to local-

ize with very high precision when desired. Below, we present details for Pygmalion’s im-
plementation of the five Kalman filter localization steps. For simplicity we assume that the

sensor frame is equal to the robot frame . If not specified all the vectors are rep-

resented in the world coordinate system .

1. Robot Position Prediction

At the time increment k the robot is at position and its best po-

sition estimate is . The control input drives the robot to the position

(fig. 5.30).

The robot position prediction at the time increment k+1 can be computed from the

previous estimate and the odometric integration of the movement. For the differen-

tial drive that Pygmalion has we can use the model (odometry) developed in section 5.2.4:
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(5.58)

with the updated covariance matrix

(5.59)

where

(5.60)

2. Observation

For line based localization, each single observation (i.e. a line feature) is extracted from the

raw laser rangefinder data and consists of the two line parameters , or , (fig.

4.36) respectively. For a rotating laser rangefinder, a representation in the polar coordinate
frame is more appropriate and so we use this coordinate frame here:

(5.61)

x

y

Fig 5.30 Prediction of the robots position (magenta) based on its former position
(blue) and the executed movement. The ellipses drawn around the robot po-
sitions represent the uncertainties in the x,y direction (e.g. ). The uncer-

tainty of the orientation is not represented in the picture.
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After acquiring the raw data at time k+1, lines and their uncertainties are extracted (fig.

5.31a/b). This leads to observed lines with line parameters (5.31c) and a covari-

ance matrix for each line that can be calculated from the uncertainties of all the measurement
points contributing to each line as developed for line extraction in Section 4.3.1.1:

(5.62)

3. Measurement Prediction

Base on the stored map and the predicted robot position , the measurement predic-

tions of expected features are generated (fig. 5.32). To reduce the required calculation

power, there is often an additional step that first selects the possible features, in this case
lines, from the whole set of features in the map. These lines are stored in the map and spec-

ified in the world coordinate system . Therefore they need to be transformed to the ro-

bot frame :

Fig 5.31 Observation: From the raw data
(a) acquired by the laser scanner
at time k+1, lines are extracted
(b). The line parameters and

and its uncertainties can be

represented in the model space
(c).
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(5.63)

According to figure (5.32), the transformation is given by

(5.64)

and its Jacobian by

(5.65)

The measurement prediction results in predicted lines represented in the robot coordinate
frame (fig. 5.33). They are uncertain, because the prediction of robot position is uncertain.

4. Matching

For matching, we must find correspondence (or a pairing) between predicted and observed
features (fig. 5.34). In our case we take the Mahalanobis distance

(5.66)
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Fig 5.32 Representation of the target position in the world coordinate frame
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ŷ∂

-----------
rt i,∂

θ̂∂
-----------

0 0 1–

αW
t i,cos– αW

t i,sin– 0
= =

ij
T

k 1+( ) ΣIN ij,
1–

k 1+( ) vij k 1+( ) g
2≤⋅⋅



5 Mobile Robot Localization 215
with

(5.67)

(5.68)

to enable finding the best matches while eliminating all other remaining observed and pre-

Fig 5.33 Measurement predictions:
Based on the map and the
estimated robot position the
targets (visible lines) are
predicted. They are repre-
sented in the model space
similar to the observations. αi

r

π-π

line i

0

ri

Fig 5.34 Matching: The observations (green) and measurement prediction (magen-
ta) are matched and the innovation and its uncertainties are calculated.
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dicted unmatched features.

5. Estimation

Applying the Kalman filter results in a final pose estimate corresponding to the weighted
sum of (fig 5.35)

– the pose estimates of each matched pairing of observed and predicted features

– robot position estimation based on odometry and observation positions

Fig 5.35 Kalman filter estimation of the new robot position: By fusing the prediction
of robot position (magenta) with the innovation gained by the measurements

(green) we get the updated estimate of the robot position (red).p̂ k k( )
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5.7 Other Examples of Localization Systems

Markov localization and Kalman filter localization have been two extremely popular strat-
egies for research mobile robot systems navigating indoor environments. They have strong
formal bases and therefore well-defined behavior. But there are a large number of other lo-
calization techniques that have been used with varying degrees of success on commercial
and research mobile robot platforms. We will not explore the space of all localization sys-
tems in detail. Refer to surveys such as [4] for such information.

There are, however, several categories of localization techniques that deserve mention. Not
surprisingly, many implementations of these techniques in commercial robotics employ
modifications of the robot’s environment, something that the Markov localization and Kal-
man filter localization communities eschew. In the following sections, we briefly identify
the general strategy incorporated by each category and reference example systems, includ-
ing as appropriate those that modify the environment and those that function without envi-
ronmental modification.

Landmark-based navigation

Landmarks are generally defined as passive objects in the environment that provide a high
degree of localization accuracy when they are within the robot’s field of view. Mobile ro-
bots that make use of landmarks for localization generally use artificial markers that have
been placed by the robot’s designers to make localization easy.

The control system for a landmark-based navigator consists of two discrete phases. When
a landmark is in view, the robot localizes frequently and accurately, using action update and
perception update to track its position without cumulative error. But when the robot is in no
landmark "zone," then only action update occurs, and the robot accumulates position uncer-
tainty until the next landmark enters the robot’s field of view.

The robot is thus effectively dead-reckoning from landmark zone to landmark zone. This in
turn means the robot must consult its map carefully, ensuring that each motion between
landmarks is sufficiently short, given its motion model, that it will be able to localize suc-
cessful upon reaching the next landmark.

Figure 5.36 shows one instantiation of landmark-based localization. The particular shape of
the landmarks enables reliable and accurate pose estimation by the robot, which must travel

Fig 5.36 Z-shaped landmarks on the ground
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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using dead reckoning between the landmarks.

One key advantage of the landmark-based navigation approach is that a strong formal theory
has been developed for this general system architecture [113]. In this work, the authors have
shown precise assumptions and conditions which, when satisfied, guarantee that the robot
will always be able to localize successfully. This work also led to a real-world demonstra-
tion of landmark-based localization. Standard sheets of paper were placed on the ceiling of
the Robotics Laboratory at Stanford University, each with a unique checkerboard pattern.
A Nomadics 200 mobile robot was fitted with a monochrome CCD camera aimed vertically
up at the ceiling. By recognizing the paper landmarks, which were placed approximately 2
meters apart, the robot was able to localize to within several centimeters, then move using
dead-reckoning to another landmark zone.

The primary disadvantage of landmark-based navigation is that in general it requires signif-
icant environmental modification. Landmarks are local, and therefore a large number is usu-
ally required to cover a large factory area or research laboratory. For example, the Robotics
Laboratory at Stanford made use of approximately 30 discrete landmarks, all affixed indi-
vidually to the ceiling.

Globally unique localization

The landmark-based navigation approach makes a strong general assumption: when the
landmark is in the robot’s field of view, localization is essentially perfect. One way to reach
the Holy Grail of mobile robotic localization is to effectively enable such an assumption to
be valid no matter where the robot is located. It would be revolutionary if a look at the ro-
bot’s sensors immediately identified its particular location, uniquely, and repeatedly.

Such a strategy for localization is surely aggressive, but the question of whether it can be
done is primarily a question of sensor technology and sensing software. Clearly, such a lo-
calization system would need to use a sensor that collects a very large amount of informa-
tion. Since vision does indeed collect far more information than previous sensors, it has
been used as the sensor of choice in research towards globally unique localization.

Figure (4.50) depicts the image taken by a catadioptric camera system. If humans were able
to look at an individual such picture and identify the robot’s location in a well-known envi-
ronment, then one could argue that the information for globally unique localization does ex-
ist within the picture; it must simply be teased out.

One such approach has been attempted by several researchers and involves constructing one
or more image histograms to represent the information content of an image stably (see for
example Figure 4.51 and Section 4.3.2.2). A robot using such an image histogramming sys-
tem has been shown to uniquely identify individual rooms in an office building as well as
individual sidewalks in an outdoor environment. However, such a system is highly sensitive
to external illumination and provides only a level of localization resolution equal to the vi-
sual footprint of the camera optics.

The Angular histogram depicted in Figure 5.37 is another example in which the robot’s sen-
sor values are transformed into an identifier of location. However, due to the limited infor-
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mation content of sonar ranging strikes, it is likely that two places in the robot’s environment
may have angular histograms that are too similar to be differentiated successfully.

One way of attempting to gather sufficient sonar information for global localization is to al-
low the robot time to gather a large amount of sonar data into a local evidence grid (i.e. oc-
cupancy grid) first, then match the local evidence grid with a global metric map of the
environment. In [115] the researchers demonstrate such a system as able to localize on-the-
fly even as significant changes are made to the environment, degrading the fidelity of the
map. Most interesting is that the local evidence grid represents information well enough that
it can be used to correct and update the map over time, thereby leading to a localization sys-
tem that provides corrective feedback to the environment representation directly. This is
similar in spirit to the idea of taking rejected observed features in the Kalman filter localiza-
tion algorithm and using them to create new features in the map.

A most promising, new method for globally unique localization is called Mosaic-based lo-
calization [114]. This fascinating approach takes advantage of an environmental feature that
is rarely used by mobile robots: fine-grained floor texture. This method succeeds primarily
because of the recent ubiquity of very fast processors, very fast cameras and very large stor-
age media.

The robot is fitted with a high-quality high-speed CCD camera pointed toward the floor, ide-
ally situated between the robot’s wheels and illuminated by a specialized light pattern off
the camera axis to enhance floor texture. The robot begins by collecting images of the entire
floor in the robot’s workspace using this camera. Of course the memory requirements are
significant, requiring a 10GB drive in order to store the complete image library of a 300 x
300 meter area.

Once the complete image mosaic is stored, the robot can travel any trajectory on the floor
while tracking its own position without difficulty. Localization is performed by simply re-

Fig 5.37 The angular histogram: Example
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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cording one image, performing action update, then performing perception update by match-
ing the image to the mosaic database using simple techniques based on image database
matching. The resulting performance has been impressive: such a robot has been shown to
localize repeatedly with 1mm precision while moving at 25 km/hr.

The key advantage of globally unique localization is that, when these systems function cor-
rectly, they greatly simplify robot navigation. The robot can move to any point and will al-
ways be assured of localizing by collecting a sensor scan.

But the main disadvantage of globally unique localization is that it is likely that this method
will never offer a complete solution to the localization problem. There will always be cases
where local sensory information is truly ambiguous and, therefore, globally unique localiza-
tion using only current sensor information is unlikely to succeed. Humans often have excel-
lent local positioning systems, particularly in non-repeating and well-known environments
such as their homes. However, there are a number of environments in which such immediate
localization is challenging even for humans: consider hedge mazes and large new office
buildings with repeating halls that are identical. Indeed, the mosaic-based localization pro-
totype described above encountered such a problem in its first implementation. The floor of
the factory floor had been freshly painted and was thus devoid of sufficient micro-fractures
to generate texture for correlation. Their solution was to modify the environment after all,
painting random texture onto the factory floor.

Positioning Beacon systems

One of the most reliable solutions to the localization problem is to design and deploy an ac-
tive beacon system specifically for the target environment. This is the preferred technique
used by both industry and military applications as a way of ensuring the highest possible re-
liablility of localization. The GPS system can be considered as just such a system (see Sec-
tion 4.1.5.1).

Figure 5.38 depicts one such beacon arrangement for a collection of robots. Just as with
GPS, by designing a system whereby the robots localize passively while the beacons are ac-
tive, any number of robots can simultaneously take advantage of a single beacon system. As

Fig 5.38 Active ultrasonic beacons.
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with most beacon systems, the design depicted depends foremost upon geometric principles
to effect localization. In this case the robots must know the positions of the two pinger units
in the global coordinate frame in order to localize themselves to the global coordinate frame.

A popular type of beacon system in industrial robotic applications is depicted in Figure 5.39.
In this case beacons are retroreflective markers that can be easily detected by a mobile robot
based on their reflection of energy back to the robot. Given known positions for the optical
retroreflectors, a mobile robot can identify its position whenever it has three such beacons
in sight simultaneously. Of course, a robot with encoders can localize over time as well, and
does not need to measure its angle to all three beacons at the same instant.

The advantage of such beacon-based systems is usually extremely high engineered reliabil-
ity. By the same token, significant engineering usually surrounds the installation of such a
system in a specific commercial setting. Therefore, moving the robot to a different factory
floor will be both time-consuming and expensive. Usually, even changing the routes used
by the robot will require serious re-engineering.

Route-based localization

Even more reliable than beacon-based systems are route-based localization strategies. In
this case, the route of the robot is explicitly marked so that it can determine its position, not
relative to some global coordinate frame, but relative to the specific path it is allowed to trav-
el. There are many techniques for marking such a route and the subsequent intersections.
In all cases, one is effectively creating a railway system, except that the railway system is
somewhat more flexible and certainly more human-friendly than a physical rail. For exam-
ple, high uv-reflective, optically transparent paint can mark the route such that only the ro-
bot, using a specialized sensor, easily detects it. Alternatively, a guide wire buried
underneath the hall can be detected using inductive coils located on the robot chassis.

In all such cases, the robot localization problem is effectively trivialized by forcing the robot
to always follow a prescribed path. To be fair, there are new industrial unmanned guided

Fig 5.39 Passive optical beacons
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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vehicles that do deviate briefly from their route in order to avoid obstacles. Nevertheless,
the cost of this extreme reliability is obvious: the robot is much more inflexible give such
localization means, and therefore any change to the robot’s behavior requires significant en-
gineering and time.
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5.8 Autonomous Map Building

All of the localization strategies we have discussed require human effort to install the robot
into a space. Artificial environmental modifications may be necessary. Even if this is not
so, a map of the environment must be created for the robot. But a robot that localizes suc-
cessfully has the right sensors for detecting the environment, and so the robot ought to build
its own map. This ambition goes to the heart of autonomous mobile robotics. In prose, we
can express our eventual goal as follows:

Starting from an arbitrary initial point, a mobile robot should be able to autonomously ex-
plore the environment with its on board sensors, gain knowledge about it, interpret the
scene, build an appropriate map and localize itself relative to this map.

Accomplishing this goal robustly is probably years away, but an important subgoal is the
invention of techniques for autonomous creation and modification of an environment map.
Of course a mobile robot’s sensors have only limited range, and so it must physically explore
its environment to build such a map. So, the robot must not only create a map but it must do
so while moving and localizing to explore the environment. In the robotics community, this
is often called the Simultaneous Localization and Mapping (SLAM) problem, arguably the
most difficult problem specific to mobile robot systems.

The reason that SLAM is difficult is born precisely from the interaction between the robot’s
position updates as it localizes and its mapping actions. If a mobile robot updates its position
based on an observation of an imprecisely known feature, the resulting position estimate be-
comes correlated with the feature location estimate. Similarly, the map becomes correlated
with the position estimate if an observation taken from an imprecisely known position is
used to update or add a feature to the map. The general problem of map building is thus an
example of a chicken-and-egg problem. For localization the robot needs to know where the
features are whereas for map building the robot needs to know where it is on the map.

The only path to a complete and optimal solution to this joint problem is to consider all the
correlations between between position estimation and feature location estimation. Such
cross-correlated maps are called stochastic maps, and we begin with a discussion of the the-
ory behind this approach in the following sub-section [75].

Unfortunately, implementing such an optimal solution is computationally prohibitive. In re-
sponse a number of researchers have offered other solutions that have functioned well in
limited circumstances. Section (5.8.2) characterizes these alternative partial solutions.

5.8.1 The Stochastic Map technique

Figure 5.40 shows a general schematic incorporating map building and maintenance into the
standard localization loop depicted by Figure (5.29) during discussion of Kalman filter lo-
calization [9]. The added arcs represent the additional flow of information that occurs when
there is an imperfect match between observations and measurement predictions.

Unexpected observations will affect the creation of new features in the map whereas unob-
served measurement predictions will affect the removal of features from the map. As dis-
cussed earlier, each specific prediction or observation has an unknown exact value and so it
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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is represented by a distribution. The uncertainties of all of these quantities must be consid-
ered throughout this process.

The new type of map we are creating not only has features in it as did previous maps, but it
also has varying degrees of probability that each feature is indeed part of the environment.

We represent this new map M with a set n of probabilistic feature locations , each with the

covariance matrix and an associated credibility factor between 0 and 1 quantifying the

belief in the existence of the feature in the environment (see Fig. (5.41)):

(5.69)

In contrast to the map used for Kalman filter localization previously, the map M is not as-
sumed to be precisely known because it will be created by an uncertain robot over time. This

is why the features are described with associated covariance matrices .
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Just as with Kalman filter localization, the matching step yields has three outcomes in regard
to measurement predictions and observations: matched prediction and observations, unex-
pected observations and unobserved predictions. Localization, or the position update of the
robot, proceeds as before. However, the map is also updated now, using all three outcomes
and complete propagation of all the correllated uncertainties (see [9] for more details).

An interesting variable is the credibility factor , which governs the likelihood that the

mapped feature is indeed in the environment. How should the robot’s failure to match ob-
served features to a particular map feature reduce that map feature’s credibility? And also,
how should the robot’s success at matching a mapped feature increase the chance that the
mapped feature is "correct?" In [9] the following function is proposed for calculating cred-
ibility:

(5.70)

where a and b define the learning and forgetting rate and ns and nu are the number of

matched and unobserved predictions up to time k, respectively. The update of the covari-

ance matrix can be done similarly to the position update seen in previous section. In map-

building the feature positions and the robot’s position are strongly correlated. This forces
us to use a stochastic map, in which all cross-correlations must be updated in each cycle [73,
74, 75].

The stochastic map consists of a stacked system state vector:

(5.71)

and a system state covariance matrix:
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(5.72)

where the index r stands for the robot and the index i = 1 to n for the features in the map.

In contrast to localization based on an a priori accurate map, in the case of a stochastic map
the cross-correlations must be maintained and updated as the robot is performing automatic
map-building. During each localization cycle, the cross-correlations robot-to-feature and
feature-to-robot are also updated. In short, this optimal approach requires every value in the
map to depend on every other value, and therein lies the reason that such a complete solution
to the automatic mapping problem is beyond the reach of even today’s computational re-
sources.

5.8.2 Other Mapping techniques

The mobile robotics research community has spent significant research effort on the prob-
lem of automatic mapping, and has demonstrating working systems in many environments
without having solved the complete stochastic map problem described earlier. This field of
mobile robotics research is extremely large, and this text will not present a comprehensive
survey of the field. Instead, we present below two key considerations associated with auto-
matic mapping, together with brief discussions of the approaches taken by several automatic
mapping solutions to overcome these challenges.

5.8.2.1 Cyclic environments

Possibly the single hardest challenge for automatic mapping to be conquered is to correctly
map cyclic environments. The problem is simple: given an environment that has one or
more loops or cycles (e.g. four hallways that intersect to form a rectangle), create a globally
consistent map for the whole environment.

This problem is hard because of the fundamental behavior of automatic mapping systems:
the maps they create are not perfect. And, given any local imperfection, accumulating such
imperfections over time can lead to arbitrarily large global errors between a map, at the mac-
ro level, and the real world, as shown in Figure (5.42). Such global error is usually irrelevant
for mobile robot localization and navigation. After all, a warped map will still serve the ro-
bot perfectly well so long as the local error is bounded. However, an extremely large loop
still eventually returns to the same spot, and the robot must be able to note this fact in its
map. Therefore, global error does indeed matter in the case of cycles.

In some of the earliest work attempting to solve the cyclic environment problem, [116] used
a purely topological representation of the environment, reasoning that the topological repre-
sentation only captures the most abstract, most important features and avoids a great deal of
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irrelevant detail. When the robot arrives at a topological node that could be the same as a
previously visited and mapped node (e.g. similar distinguishing features), then the robot
postulates that it has indeed returned to the same node. To check this hypothesis, the robot
explicitly plans and moves to adjacent nodes to see if its perceptual readings are consistent
with the cycle hypothesis.

With the recent popularity of metric maps such as fixed decomposition grid representations,
the cycle detection strategy is not as straightforward. Two important features are found in
most autonomous mapping systems that claim to solve the cycle detection problem. First,
as with many recent systems, these mobile robots tend to accumulate recent perceptual his-
tory to create small-scale local sub-maps [117, 118, 119]. Each sub-map is treated as a sin-
gle sensor during the robot’s position update. The advantage of this approach is two-fold.
Because odometry is relatively accurate over small distances, the relative registration of fea-
tures and raw sensor strikes in a local sub-map will be quite accurate. In addition to this, the
robot will have created a virtual sensor system with a significantly larger horizon than its
actual sensor system’s range. In a sense, this strategy at the very least defers the problem of
very large cyclic environments by increasing the map scale that can be handled well by the
robot.

The second recent technique for dealing with cycle environments is in fact a return to the
topological representation. Some recent automatic mapping systems will attempt to identify
cycles by associating a topology with the set of metric sub-maps, explicitly identifying the

Fig 5.42 Cyclic Environments: A naive, local mapping strategy with small local er-
ror leads to global maps that have a significant error, as demonstrated by
this real-world run on the left. By applying topological correction, the grid
map on the right is extracted [47].
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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loops first at the topological level. In the case of [118] for example, the topological level
loop is identified by a human who pushes a button at a known landmark position. In the case
of [119] the topological level loop is determined by performing correspondence tests be-
tween sub-maps, postulating that two sub-maps represent the same place in the environment
when the correspondence is good.

One could certainly imagine other augmentations based on known topological methods. For
example, the globally unique localization methods described in Section (5.7) could be used
to identify topological correctness. It is notable that the automatic mapping research of the
present has, in many ways, returned to the basic topological correctness question that was at
the heart of some of the earliest automatic mapping research in mobile robotics more than a
decade ago. Of course, unlike that early work, today’s automatic mapping results boast cor-
rect cycle detection combined with high-fidelity geometric maps of the environment.

5.8.2.2 Dynamic environments

A second challenge extends not just to existing automonous mapping solutions but even to
the basic formulation of the stochastic map approach. All of these strategies tend to assume
that the environment is either unchanging or changes in ways that are virtually insignificant.
Such assumptions are certainly valid with respect to some environments, such as for exam-
ple the computer science department of a university at 3:00 past midnight. However, in a
great many cases this assumption is incorrect. In the case of wide-open spaces that are pop-
ular gathering places for humans, there is rapid change in the freespace and a vast majority
of sensor strikes represent detection of the transient humans rather than fixed surfaces such
as the perimeter wall. Another class of dynamic environments are spaces such as factory
floors and warehouses, where the objects being stored redefine the topology of the pathways
on a day-to-day basis as shipments are moved in and out.

In all such dynamic environments, an automatic mapping system should capture the salient
objects detected by its sensors and, furthermore, the robot should have the flexibility to mod-
ify its map as the position of these salient objects changes. The subject of continuous map-
ping, or mapping of dynamic environments is to some degree a direct outgrowth of
successful strategies for automatic mapping of unfamiliar environments. For example, in

the case of stochastic mapping using the credibility factor mechanism, the credibility

equation can continue to provide feedback regarding the probability of existence of various
mapped features after the initial map creation process is ostensibly complete. Thus, a map-
ping system can become a map-modifying system by simply continuing to operate. This is
most effective, of course, if the mapping system is real-time and incremental. If map con-
struction requires off-line global optimization, then the desire to make small-grained, incre-
mental adjustments to the map is more difficult to satisfy.

Earlier we stated that a mapping system should capture only the salient objects detected by
its sensors. One common argument for handling the detection of, for instance, humans in

the environment is that mechanisms such as can take care of all features that did not de-

serve to be mapped in the first place. For example, in [117] the authors develop a system
based on a set of local occupany grids (called evidence grids) and a global occupancy grid.
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Each time the robot’s most recent local evidence grid is used to update a region of the global
occupancy grid, extraneous occupied cells in the global occupancy grid are freed if the local
occupancy grid detected no objects (with high confidence) at those same positions.

The general solution to the problem of detecting salient features, however, begs a solution
to the perception problem in general. When a robot’s sensor system can reliably detect the
difference between a wall and a human, using for example a vision system, then the problem
of mapping in dynamic environments will become significantly more straightforward.

We have discussed just two important considerations for automatic mapping. There is still
a great deal of research activity focusing on the general map building and localization prob-
lem [9, 6, 47, 48, 49, 50, 75, 77]. However, there are few groups working on the general
problem of probabilistic map building (i.e. stochastic maps) and, so far, a consistent and ab-
solutely general solution has yet to be found. This field is certain to produce significant new
results in the next several years, and as the perceptual power of robots improves we expect
the payoff to be greatest here.
R. Siegwart, EPFL, Illah Nourbakhsh, CMU
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